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SUMMARY

The current practice of nondestructive assay (NDA) of fissile materials using neutrons
is dominated by the 2He detector. This has been the case since the mid 1980s when
Fission Multiplicity Detection (FMD) was replaced with thermal well counters and neutron
multiplicity counting (NMC). The thermal well counters detect neutrons by neutron capture
in the 3He detector subsequent to moderation. The process of detection requires from 30 to
60 us. As will be explained in Section 3.3 the rate of detecting correlated neutrons (signal)
from the same fission are independent of this time but the rate of accidental correlations
(noise) are proportional to this time. The well counters are at a distinct disadvantage when
there is a large source of uncorrelated neutrons present from («, n) reactions for example.

Plastic scintillating detectors, as were used in FMD, require only about 20 ns to de-
tect neutrons from fission. One thousandth as many accidental coincidences are therefore
accumulated. The major problem with the use of fast-plastic scintillation detectors, how-
ever, is that both neutrons and gamma rays are detected. The pulses from the two are
indistinguishable in these detectors.

For this thesis, a new technique was developed to use higher-order time correlation
statistics to distinguish combinations of neutron and gamma ray detections in fast-plastic
scintillation detectors. A system of analysis to describe these correlations was developed
based on simple physical principles. Other sources of correlations from non-fission events
are identified and integrated into the analysis developed for fission events. A number of
ratios and metrics are identified to determine physical properties of the source from the
correlations. It is possible to determine both the quantity being measured and detection
efficiency from these ratios from a single measurement without a separate calibration. To

account for detector dead-time, an alternative analytical technique was also developed.
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As a demonstration of this technique, an experiment based on a 22Cf source and three
plastic scintillating detectors was conducted. The Nuclear Materials Identification System
(NMIS), a system developed at ORNL, was used to analyze the time correlations for the
experiment.

The mass of the 2%2Cf source was estimated from three methods. The results of these
methods are compared to an independent measurement of the 252Cf mass at ORNL. The
three methods include 1) the count rate of the ion-chamber containing the source; 2) ratios
of the square of gn pairs to either gn|g or gn|n combinations; and 3) finally the Cy,,
correlations.

The number of fissions detected in the ion-chamber containing the ?°2Cf, adjusted for
the fission detection-efficiency ey, is the most reliable of these methods. The result from
the ion-chamber method was about 0.13 pg £10%. Of the two passive methods, the Cy,,
correlation proved to be more accurate with an adjustment for neutron triplets. The ratio
of the gn correlation squared suffered from both nn contamination in Cy, as well as nnn
contamination in Cy, |, and Cgp|,- The result from the Cyy |, correlation was about 0.117 ug
+2% for the 3-inch detector experiment and 0.115 pg +1% for the 4-inch experiment.?
The independent measurement at ORNL resulted in values of 0.115 ug +3% and 0.114 ug
+3% at the time the 3-inch and 4-inch experiments were performed.

The main weakness of this technique as implemented in these experiments is low detec-
tion efficiency. In these experiments the detection efficiency was less than 2x1073. This
detection efficiency can be improved with larger detectors. The advantage is the shorter
correlation window. A window as short as 32 ns could be used. This is 1000 times shorter
than that needed by well counters. The combination of low detection efficiency and a short
correlation window would provide a great advantage in the case of a small amount of fissile

material in the presence of a large («, n) background.

%3-inch and 4-inch are the nominal sizes of the detectors used. The actual dimensions are given in the
description of the experiment in Section 7.2.






CHAPTER 1

INTRODUCTION

”their material possessed the wonderful qual-
ity of being invisible to any man who was unfit

for his office or unpardonably stupid.”

Hans Christian Andersen
Fairy Tales and Stories (1837)

English Translation: H. P. Paull (1872)

Nondestructive assay (NDA) of nuclear materials is made possible by the fact that fissile and
fertile transuranic (TRU) isotopes emit characteristic radiations. TRU isotopes typically
decay by alpha decay. The even numbered isotopes also have significant spontaneous fission
rates. NDA is generally divided into active and passive techniques. Passive techniques take
advantage of the spontaneous radiations emitted by these isotopes. These techniques can
be further subdivided by the type of radiation measured. These categories are gamma-ray
assay, neutron assay, and calorimetric assay.

Fission Multiplicity Detection (FMD) is the name of the standard technique used in
NDA of nuclear materials in the 1960s and 1970s. It was characterized by the use of fast
plastic scintillating detectors. These systems were used in both active and passive mode.
These FMD systems were eventually replaced by thermal well counters as the standard NDA
technique. The thermal well counters use 3 He detectors embedded in a moderator. Among
the passive neutron assay techniques, neutron multiplicity counting (NMC) in a thermal
well counter is a preferred technique for the determination of fissile mass when spontaneous
fission yields are significant. It is used in conjunction with gamma-ray spectroscopy to

determine the isotopic composition of a sample. From the isotopic composition, NMC



determines the fissile mass.

The major problem with the use of fast-plastic detectors as used in FMD is that both
neutrons and gamma rays are detected. The pulses from the two are indistinguishable.[44]
Recently, however, there is a renewed interest in using plastic scintillating detectors for
FMD due to the higher count rates possible and the lower accidental coincidence rate. The
availability of fast time analyzers make the distinguishability of neutron and gamma-ray
events possible in fast-plastic detectors.

For this thesis, a new technique was developed to use higher-order time correlation
statistics to distinguish combinations of neutron and gamma ray detections in fast plas-
tic detectors. A system of analysis to describe these correlations from fission events was
developed based on simple physical principles. Other sources of correlations from non-
fission events were identified and integrated into the analysis developed for fission events. A
number of ratios and metrics were identified to determine physical properties of the fissile
material from the correlations. The analysis does not explicitly includes combinations of
events such as fissions followed by inelastic scattering of the neutrons in the matrix mate-
rials. The thesis, instead provides qualitative insight into the interpretation of empirical
data which include these effects.

Fissions followed by further fissions in the multiplication process, on the other hand, is
explicitly included in the analysis. This analysis will be an extension of the early treatment
of the multiplication process proposed by Bohnel which is still used in NMC today.[6]

As a demonstration of this technique, an experiment based on a 2?Cf source and three
plastic scintillating detectors was conducted. The Nuclear Materials Identification System
(NMIS)[35], a system developed at ORNL, was used to analyze the time correlations for
the experiment. The new technique was first used with an instrumented 232Cf source, and
then extended to a non-instrumented source to demonstrate the relation between the two
configurations. Various data about the source were extracted and analyzed from the time

correlation statistics.



The current and previous techniques of passive neutron NDA are first reviewed in Chap-
ter 2. How the time correlations are calculated are described by example in Chapter 3. The
mathematics necessary to represent the time correlations is then reviewed in that chapter.
An analytical representation for the correlations between the source and a detector, between
two detectors, between the source and two detectors, and finally between three detectors
resulting from a fission event is developed in Chapter 4. From this analysis, the temporal
separation of the gamma and neutron combinations becomes apparent. Various ratios of
these correlations are presented. In addition various non-fission sources of correlated detec-
tions are described and related to the analysis of the correlations from fission. To account
for detector dead-time, an alternative analytical technique will be presented in Chapter 6.
The experimental setup for the 2°2Cf measurement will be presented in Chapter 7. The
results of the experiment will then be presented in Chapter 8, followed by conclusions in
Chapter 9. A derivation of the factorial moments for neutron and gamma-ray coincident
detections from multiplying material using probability generating functions is given in Ap-

pendix A.



CHAPTER I1

CURRENT AND PAST PRACTICES OF PASSIVE
NEUTRON AND FISSION MULTIPLICITY COUNTING
TECHNIQUES FOR NDA

This chapter will describe the current techniques of passive neutron counting for NDA with
thermal well counters including the more recent innovation of Time Interval Analysis (TIA).
Fission multiplicity detection (FMD) will then be briefly described along with the previous
NMIS implementation of multiplicity.

In NDA! it is the quantity of an unknown fissile mass that is of interest. In addition
to this unknown, the chemical composition, mixture and environment of the mass may also
be unknown. Because of these other unknowns, neutrons may be generated from («,n)
reactions rather than fission, and the neutron detection efficiency may not be well known.

The techniques used to overcome these difficulties will be described.

2.1 Detectors

The nature of the detectors used in the current practice of passive neutron counting for
NDA must be contrasted with the fast, plastic-scintillating detectors used in this research.
The detectors used in current techniques are neutron well counters. These well counters
are comprised of 3He tubes embedded in an annular polyethylene moderator. The sample
being measured is placed in the well of the annulus which is lined with cadmium to decouple
the sample from the moderator. ®He detectors operate through the 3He(n,p)>H thermal
capture reaction. As a consequence these detectors do not detect gamma rays. Furthermore,

once a neutron is detected it is removed from the system.

'See References [45] and [46] for a good overview of NDA.



The fast, plastic-scintillating detectors operate on proton recoil for neutron detection.
Gamma rays are detected as well as neutrons, and a detection of a neutron or gamma ray
does not remove it from the system. The neutron detection efficiency for the well counters
can be as high as 50% or more. By contrast the efficiency of the 4-inch detectors used in
this research is less than 1% when the solid angle is considered. The detection efficiency
of the well counter is greatest at about 1 MeV. Relatively high detection efficiency extends
down to several keV or lower. The fast plastic scintillators are blind below the threshold
setting which was set at 1 MeV in this research.

The time response between the two types of detectors is also entirely different. The time
response of the well counters is characterized by a single exponential die-away with a time
constant on the order of 50 us. The detector die-away time is a characteristic of the thermal
detector moderator. The time response of the fast plastic detectors is dominated by the
time of flight of the radiation. For the threshold neutrons with a velocity of 1.4 cm/ns this

time is 17 ns at a distance of 23 cm.

2.2 Thermal well and shift register techniques

Total neutron counting, coincidence counting and neutron multiplicity counting (NMC)
are all used in NDA. Although NMC in a sense encompasses the other two methods, the
other methods are still used and can produce better results. The choice of method depends
on the nature of four unknowns: total mass, (a,n) rate, multiplication, and detection
efficiency. It is the total mass of plutonium mry, that is determined from a passive
neutron measurement. The isotopic composition of the plutonium is determined by another
method. This other method would typically be gamma spectroscopy. The composition
is expressed as mass ratios (fa3s, f240, fo42). One might observe that the total mass in
milligrams could be determined from the total neutron count rate per second S using the
data in Table 1.2 The symbol S is used because this count rate is identical to the singles

rate in NMC.

*This data is from Reference [45].
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Equation (1) assumes that there are no (a,n) reactions, and no multiplication. Suppose

MTotal (ng) =
e [2.59 (

however that some of the plutonium is in oxide form. The neutron yield from (e, n) reac-
tions can be considerable. Neutron coincidence counting was developed to measure myyq;
when the (@, n) reaction rate was unknown. Neutrons from the («,n) reaction are always
generated in singles. Neutrons from spontaneous fission, on the other hand, are generated
in multiplets v with a probability density of p(r). The effect of multiplication is generally
estimated through calibration standards.

Coincidence counting is essentially identical to determining the doubles rate D in mul-
tiplicity counting. The explanation of coincidence counting will therefore be treated along
with multiplicity counting.? Although multiplicity counting can determine the mul-
tiplication directly, coincidence counting with a calibration standard can produce better

results.

Table 1: Spontaneous fission data

Isotope Spontaneous v
fission yield

()

238 py, 2.59 2.21
240 py, 1.02 2.16
242 py, 1.72 2.15

220f 2.34 x 10°  3.757

The calculation of mpy in Equation 1 is based on spontaneous fission yields. It was
assumed that there was no multiplication in the plutonium, i. e., that the spontaneous
fissions did not induce more fissions. It also assumes that the detection efficiency e, is

known. This efficiency can be affected by the composition of the sample which might not

3A more comprehensive introduction to multiplicity counting can be found in reference [16]. In addition,
reference [1] provides insight and historical perspective.



be well known. One of these additional unknowns can be determined if, in addition to the
doubles rate D in coincident counting, the triples rate T is also determined. This extension
is in essence multiplicity counting. Both the doubles D and triples rate 7" are determined
from shift register statistics.

A typical shift register as shown in Figure 1 might have 128 bits and operate on a 4
MHz clock. Each bit would therefore represent 0.25 ys. The gate window W would be 32
us which is the total time required for a bit to travel through the shift register. A pulse
from the detector sets the first bit in the shift register. This bit is shifted one bit at a time
down the register every 0.25 us. A counter increments by one for each bit that enters the
shift register and decrements by one for each bit that exits the shift register 32 us later.
This counter therefore contains the number of pulses in the shift register at any time which

represents the number of detected pulses which occurred in the previous 32 us.
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Figure 1: Shift register functional diagram.



The content of the counter must be tallied at various times. Tallying the shift register is
often referred to as triggering the gate. There are essentially three methods for choosing this
time. These approaches are referred to as 1) signal-triggered, 2) randomly-triggered, and
3) combined-triggered. In the signal-triggered method, the content of the shift register is
tallied when each pulse exits the shift register. The result is the number of pulses following
every pulse within the gate window W. Typically the tally is triggered after a short delay
of 3 to 4.5 us called a pre-delay. This pre-delay results in shifting the closest pulses off
the shift register before the tally is made. These pulses tend to be biased by detector dead
time. The purpose of the pre-delay is to remove this bias. A gate triggered in this manner
is called the R + A or reals plus accidentals gate. For pulses occurring at an average rate
A, the shift register will contain AW pulses on average. If AW is small and the pulses are
random, the number of pulses n in the shift register will follow Poisson statistics. When
pulses arise from fission neutrons however, they tend to be clustered in time because of the
multiplicity of neutron emission. This clustering gives rise to the real coincidences in the
R + A gate. The average number of pulses in the shift register will then be greater than
AW.

Alternatively, the gate could be triggered either periodically or randomly (independent
of the pulse times). This approach is the randomly-triggered method. In either case, the
gate is triggered randomly in time from the detector pulses. The average number of pulses
will be AW which is the accidental rate. The actual distribution of n pulses in the register
will not follow Poisson statistics if the pulses tend to be clustered in time because of fission
multiplicity. The real coincidences can also be determined from this approach from the
deviation from Poisson statistics. This method comes from the Feynman variance method.

As the name implies, the combined approach has both signal and random triggering.
Typically however, the random triggering is accomplished by triggering the A gate after a
long but constant delay after the R+ A gate. The delay for the A gate is set sufficiently long
to allow all correlated events to die away. A typical value for this delay might be 4096 us.

Although in reality the A gate is signal triggered, it is assumed that all the real correlated



events have died away.

Once the measurement is accomplished in the combined approach, there will be two
distributions of shift register counts. One distribution is for the R + A gate, the other is
for the A gate. The distributions contain tallies of the number of times that 0, 1, 2,... n
bits were set in the shift register at the time it was triggered. Properly normalized by the
total counts, we can call these distributions p(n) from the R + A gate and ¢(n) for the A
gate. These distributions represent the probability of finding 0, 1, 2, ... counts in the shift
register at the appropriate trigger times. From these distributions, the singles, doubles, and
triplets are computed.

The distribution that we want is the probability that n correlated neutrons are in the
shift register. This probability is usually called r(n). The probability of finding no counts
in the R 4+ A gate is p(0) = r(0)¢(0). That is, the probability of finding no correlated
counts and no accidental counts. One count in the R 4+ A shift register can come from one
correlated count and no accidentals or from one accidental and no correlated counts. The
probability of this occurring is therefore p(1) = r(0)g(1) +7(1)g(0). The probability of two
counts is p(2) = r(0)q(2) +r(1)g(1) +7(2)g(0) and so on. These probabilities are related in

general by

p(n) = r(i)g(n — ). (2)

i=0
The probability distribution r(n) can be solved recursively. From the preceding para-
graph, we know that 7(0) = 2%. The probability of one real can then be solved from r(0)

asr(l) = ’%. Continuing the process results in the recursive formula for r(n):

1 n—1 . .
r(n) = 20) p(n) - ZZ:%T(Z)Q(” — i) - 3)

Of course when 7 is zero, no correlated counts are in the shift register when it is triggered. A
doublet results when one pulse in the shift register is correlated with the trigger. Therefore
n = 1 is indicative of a doublet or correlated pair.

The singles, doubles and triples (S, D, T') are then computed from the moments of the
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r(n) distribution.[25] These moments are defined as

=3 (D) =% s (@)

i=n i=n
The first three of these moments are

o

To :Zr(z’) =1

1=0

ry = er(z) =i
i=1
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2

If we let R be the total number of gate triggers in the shift register or this total divided

by measurement time for a rate, the singles, doubles and triples are

S = RT‘() =R
D= 57‘1 (5)
T = S’I’Q.

These values can be and typically are computed directly from the moments of the p(n)
and ¢(n) distributions. In addition it is also possible to compute S, D and T from the
background ¢(n) alone using the Feynman variance technique.

The singles, doublets and triplets can then be related to the actual physical parameters

of the sample by the neutron multiplicity point equations.[21]

S=Ne,Mvg(1+ a)

]\ft?Z,)cdj\J2 M-1
D= __mnla’" 1 ;
2 Vg2 - 1 1/51( + a)’/ZZ
Né fi M3 M1 ©
T = % [V53 + ( ) [Brsavia + vs1(1 + ) vis]
6 vip —1
M —1)\?
+3 (1/-1 — 1) vs1(1+ 04)’/122]
(3

where

N is the spontaneous fission rate of 240Pu,
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€, is the neutron detection efficiency,

M is the neutron leakage multiplication defined as M = %, where k.pr = pv; is

the neutron multiplication factor,
« is the (o, n) to spontaneous fission neutron ratio,*

fa, ft are the doubles and triples gate fraction respectively, (See Section 2.3 for further

discussion on these factors) and

Vsn, Vin are the nth reduced factorial moments of the spontaneous and induced fission
distributions respectively. These reduced moments are defined similar to Equation 4

but without the n! in the denominator, which then appears explicitly in the equations.

Usually three of the four variables, N, €,, M, or « are solved from S, D, and T. The
effective mass of 40Py is then calculated from the fission rate N and the specific fission

rate of 240 Py. Finally the total mass of Pu is

mM240 (7)
2.54 f38 + foao + 1.69 foso)

MTotal = (

The final value of mypy, may still be biased if the sample being measured does not meet
the assumptions of the point equations. Calibration procedures may be needed to remove

this bias. In addition, corrections may also be needed to account for detector dead-time.

2.3 Time Interval Analysis (TIA)

A new approach to neutron multiplicity analysis has been recently proposed by Baeten.[1,
7,2, 3,4, 5] It departs from the traditional shift register approach in favor of time interval
analysis (TTA). In this sense it is similar to the time correlations produced by NMIS. In
terms of NMIS signatures, it is based on the detector autocorrelation for doublets and a
detector auto bicorrelation for triplets. It differs from NMIS in that the detector is a thermal

well used in the traditional multiplicity techniques as described above.

4The symbol « is also used in Chapter 5 for the Rossi-alpha. Both uses of o are so well established that
the conflict will be tolerated.
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Although TTA is a new approach to multiplicity analysis, virtually identical equations
were derived by Hansen in 1968.[22] Baeten uses the same definition of the delay variables,
i. e., 71 = t9 —t1 and 79 = t3 — t3. An arguably more natural definition for 79 would refer
it back to the first detection also, which would make 79 = t3 — ¢;. One difference, however,
is that Hansen casts his equations in terms of the Rossi-alpha and includes multiplication
terms. Baeten’s equations are in terms of the detector die-away 7p and does not include
multiplication. Baeten’s treatment of multiplication will be revisited briefly in Section 5.1.

The probability density of detecting a neutron introduced into the system at time zero
b
D

by such a thermal detector as a function of time, given that it is detected, is p(t) =
The variable 7p is the detector die-away time. The unobserved source-detector correlation
would then be

Ne,v —t

e ™D (8)

Clg(t) =+ =

where A is the average background counts rate. If we assume that the only source of
this background is uncorrelated accidentals arising from spontaneous fission and neutrons
detected from (@, n) reactions, A = Ne,U + N,. The correlation Ci2(t) can be integrated

over the measurement time to determine the number of singles S

t
™ Cro(t)dt Ne,v
S — M = Ne,v + N, + €nt
tm tm (9)
~ Ne,v(1 + a)
where Ne—f is virtually zero and a = %

In such a system, the detector autocorrelation will be

Né2v(v—1) _
CQQ(Tl =19 — tl) = )\2 + %e D (10)

where ¢y and t; are the times of two distinct correlated detections. In TIA this autocorre-
lation is called the one dimensional Rossi-alpha. This is somewhat of a misnomer because
the die-away time 7p is purely a characteristic of the detector. It has little to do with the
reactivity of the sample being measured.

This autocorrelation can be related to the shift register statistics by integrating the time

I
variable 7y over the shift register gate window W. The doubles rate is %@71) provided



13

W >> 7p. If this condition is not valid, a factor of (1 — e’vg> remains. This factor is fy
in Equation 6.

The auto-bicorrelation can also be computed for the thermal-well detector. It is a
function of two delay variables 71 = to — t; and 70 = t3 — t3. It will be comprised of
accidental triplets, correlated pairs and one accidental, and correlated triplets.

First, the correlated triplet is

e ™  di] = e ™D . 11
3 : 377 ()

/°° Neév(v—1)(v—2) 3tntn  Nev(v—1)(v—2) nim
0

There are three accidentals, at times t3, t9 or ¢1, which can form triplets with correlated

pairs. These correlated pair, accidental triplets are

ANeiu(u—l)( N i 72>

676—{—6 ™ +e ™D
2Tp

respectively. The accidental triplet rate is then \3.

Combining these three components yields

Née2 | w(y—-1) [ - _ndin o
Coma(71,72) = A} + —2 [ V(V2 ) (e ™ t+e D +e TD)
™D

e ™D

env(v —1)(v —2) _(2t1+tz)]
+ .
31D

The triplets rate from the shift register approach is related to the correlated triplets and
can be found by integrating over both delay variables, 71 and 79, from 0 to W. With the

provision that W >> 7, 79, the triplet rate becomes

_ Nev(v —1)(v — 2).

T 13
- (13)
The other quantities from shift register analysis having already been found are
S=Neyv(l+ ) (14)
Ne2v(v —1
D= % (15)

Compare these equations for S, D and T to those of Equation 6. These equations were

derived under the assumption that there was no multiplication. Therefore M = 1. It was
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assumed that W >> 7p so that f; = f; = 1 also. Substituting these values into Equation 6
reconciles the equations. The treatment of multiplication in TTA will be continued in the

discussion in Chapter 5.

2.4 Fission Multiplicity Detectors (FMD)

Previous to the current practice of counting in thermal well counters, fast plastic-scintillation
detectors were used in a technique called fission multiplicity detection (FMD).> These sys-
tems were popular in the 1960s and 1970s. Several of these systems were commercially
available. One of the earliest of these was the Isotopic Source Assay System (ISAS) devel-
oped by Gulf General Atomics. It was used in passive mode for the assay of plutonium or
with a neutron source for the assay of uranium. Another commercial system was the Iso-
topic Source Adjustable Fissionometer (ISAF) designed by IRT Corporation formerly Gulf
Radiation Technology. It used an Am-Li source in active mode. There were two versions
of the Random Driver. One was from Los Alamos Scientific Laboratory. It used an Am-Li
source. The other was from National Nuclear Corporation and used a Pu-Li source in active
mode.

These systems all used two or four fast plastic detectors sensitive to both fast neutrons
and gamma rays. Coincidences were counted between detectors. The analysis used was very
much like that found in Chapters 4 and 6 of this thesis. Gamma rays were not explicitly
treated however. The analysis was restricted to neutrons. In the case of LANL’s Random
Driver, the detectors were shielded with 5 cm of lead to suppress gamma detections. As
will be shown in Section 4.6.2, the lead shields will produce correlations through inelastic
scattering. In addition the gamma-gamma peak in the detector-detector cross correlation
was blocked.

Multiplication was not considered in the analysis for FMD. Apparently there was heavy
reliance on calibration standards to take multiplication into account. The large plastic

scintillators used in FMD must have increased multiplication through reflection back into

SFor a description of FMD see [46] pages 174 to 178 and [20] at paragraphs 8.6, 8.7 and 9.5.
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the sample. Cadmium is used in the thermal well counter to decouple the detector from
the sample.
In a comparison with the active well the major disadvantage of the Random Driver was

its bulk. It weighed a metric ton, which was ten times heavier than active well.

2.5 NMIS multiplicity

A kind of multiplicity capability has been previously incorporated into NMIS.[37, 41, 51]
This section will describe this implementation. In passive mode, a selectable number of the
five detector channels can be treated as if it were one channel. An R+ A register is simulated
with each detection being a trigger. The window length and pre-delay are definable in the
software. In the multiplicity mode the block® is disregarded as a barrier. The window
can cross between blocks. For the A register the beginning of each block is treated as the
trigger. This approach is equivalent to periodic triggering. From the R+ A and A gates the
p(n) and ¢(n) distributions are generated. The distribution of reals r(n) is generated from
these recursively and the factorial moments of r(n) computed directly from the distribution.
NMIS essentially mimics a traditional shift register albeit capable of 1 ns time bins. If it
were hooked up to a well counter, one would have an ordinary multiplicity system.

An active mode has also been implemented. In this mode only channel 1 acts as the
trigger rather than all channels. In this mode the 22Cf ion-chamber is connected to this
channel. This differs from current implementations of active multiplicity in which the active
source is not observed and therefore cannot act as a trigger.

The fast plastic scintillating detectors used in NMIS make these multiplicities entirely
different from traditional multiplicity counting. Unlike the 3He detectors used in tradi-
tional multiplicity, the plastic scintillators also detect gamma rays. So the multiplicity is
a combined neutron and gamma multiplicity. In addition, the fast detectors are blind to
neutrons below the threshold energy for neutrons, usually set at 1 MeV. Neutrons are not

removed from the system on detection. This can cause a single radiation to be counted more

S A Dblock is the term used for a periodic window.
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than once or to be reflected back into the sample. A more complete comparison between
the detectors is described previously in Section 2.2.

Why not simply use a combined gamma-neutron multiplicity as the assay measure-
ment? First, there is nothing analogous to the point equations (Equation 6) used in the
traditional multiplicity approach to relate the combined multiplicity to effective mass, (c,
n) rate, multiplication and detector efficiency. Second, although the fast plastic scintillators
detect copious gamma rays, they are not especially well suited for that purpose. Because
of the low Z of the detectors, the probability of interaction is low and furthermore the in-
teractions that do occur are primarily Compton scattering interactions. So for a Compton
scattering event, there is a substantial probability that the energy deposited will be below
the threshold for gamma rays. Third, the gamma multiplicities are not well known. Fi-
nally, gamma multiplicities have numerous ill-behaved characteristics which make consistent
measurements difficult. Gamma multiplicities are more energy dependent than neutrons.|8]
Therefore small changes in the discriminator threshold will change the apparent multiplicity.
Attenuation of the gamma rays, which is also energy dependent, will change the observed
multiplicities. Many other events besides fission produce multiplicities of gamma, rays. The
beta decay of the fission products typically emit a cascade of several gamma rays. Not all
of these problems are eliminated by temporal neutron-gamma separation, but they can at

least be isolated and treated separately.
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CHAPTER III

TIME ANALYSIS AND DEFINITION OF TIME

CORRELATION

The purpose of this chapter is to bridge the gap between the experiment and the math-
ematical analysis. First the algorithm used by the NMIS time-analyzer will be described
with simple examples. The mathematics needed to represent the correlation data will then
be described.

The input to the NMIS time-analyzer electronics comes from the output of a discrim-
inator, a constant fraction discriminator (CFD). For now, assume that the discriminator
signals the time of a detection event with a 0 to 1 logic transition. At this point, the signal
is a continuous variable of time. The NMIS time-analyzer then effectively converts this
continuous time signal into a discrete time variable by assigning it to a time bin of width
At in a block of data with N time bins. Both At and the block size N are adjustable.
Typically At = 1 ns and N = 512. The length of a block is then 512 ns or a little over a
half a microsecond. Compare this time to the At of 0.25 us for the typical shift-register.
There are five input channels numbered 1 through 5. The fundamental datum of NMIS is
the time bin or bins in a block which contains a detection, if any, in each of five parallel
channels. The blocks are parallel in the sense that they all begin and end at the same
time. To put these parameters in perspective, a typical 2°2Cf ionization chamber source
will count 3x10° fissions per second. That means on average, one in 6.5 blocks will see a
source fission. The detector count rates are much lower. At one meter from such a source,
a 4-inch detector might register 1,000 counts per second. The detection rate is then less
than one in a thousand blocks. The probability that a block from this detector will contain
two uncorrelated detections (assuming no dead-time) is about 10~7.

The NMIS time-analyzer then computes and tallies the time between detections in



18

all pairs and triplets of detectors. These are the correlations. They include blocks with

themselves for the autocorrelations. All of the pairs and triplets are shown in Table 2.

Table 2: Correlation data accumulated by NMIS

correlation | bicorrelation
11 111
22 222
Auto- 33 333
44 444
55 555
12 123
13 124
14 125
15 134
Cross- 23 135
24 145
25 234
34 235
35 245
45 345

3.1 NMIS Correlations - simple examples

A few simple examples of how correlations are computed will now be described with a five
bin block. Figure 2 shows channels 1, 2 and 3. Also shown is Cy;, Ci2, Ci13 and Cia3.
For the autocorrelations, every detection is tallied in bin zero. All pairs of detections in
a single block of the channel are tallied in the bin corresponding to the time difference
between the two detections. The correlation C3 is shown vertically beside Cio3 to show
how C193 is related to C19 and C13. Notice that in the first case (a), Ci3 has no detections.
Therefore there are no triplets and C93 will contain all zeros. The second case (b) shows
two detections in channel 1 and one detection each in channels 2 and 3. Notice that in
C123 two triplets are tallied. All of the doubles and triples are tallied block by block and
accumulated.

Could the triples be computed as an outer product of the doubles correlations after all
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Figure 2: Single block correlations.

the blocks are tallied? The answer is only if Cio and Ci3 are independent. An example
will demonstrate this property. Suppose the bin in channel 1 is chosen by the roll of a
five-sided die, numbered 0 to 4. The bins in channel 2 and 3 are then chosen by flipping a
coin. One is added to the die for heads and one subtracted for tails. Correlations Ci5 and
C13 are shown in Figure 3 normalized by the number of trials. These are the correlations
whether the bin in channel 2 and 3 is chosen by a single flip for both or independent flips
for each. The correlation Cjs3, however, changes depending on the independence of channel
2 and 3. These two cases are shown in Figure 3 and Figure 4. If channels 2 and 3 are
chosen independently, Cjo3 is the outer product of Ci2 and Ci3 as shown in Figure 4 (b).
If channels 2 and 3 are chosen by the same flip, C}93 is as shown in Figure 4.

Why don’t the cross correlations in Figures 3 (a) and 4 (a) add up to one? This is the

result of window bias which will be explained in the next paragraph. The deficiency in the
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probability comes from the combinations of a zero on the die along with a tails and a 4 on

the die combined with a heads. In either case the result is not tallied.
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Figure 3: Independent correlation: (a) window biased and (b)
unbiased.

Typically the 252Cf source is input in channel 1 in NMIS. The blocks begin periodically.
Blocks are not triggered on the events by NMIS. This approach causes a window bias in the

1 The nature of the bias can be seen by returning to the dice examples.

cross-correlations.
Suppose the bin in channel 1 is chosen by the throw of a die as in the preceding example.
The bin in channel 2 is then chosen by throwing the same die and adding the value to that
used for channel 1. If the number exceeds the number of bins it is discarded. The resulting
normalized Ci2 correlation is shown in Figure 5 (a). When bin one is chosen in channel 1,
delays of 1 to 4 are equally probable in channel 2. When bin 2 is chosen, delays of 1, 2 and
3 are equally likely in channel two, and so on. The window-biased cross correlation Ciq is

shown in Figure 5 (a). If on the other hand we always assign the event in channel 1 to bin

zero, C19 there would be no window bias as shown in Figure 5 (b).

'For the algorithm to correct window bias in HOS correlations see[29] at page 130.
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Figure 4: Dependent correlation: (a) window biased and (b)
unbiased.
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Figure 5: Window bias: (a) biased and (b) unbiased correla-
tions.

3.2 Definition of the correlation function

The correlation of the functions z1(¢;) and z2(t2) of the random variables ¢; and ¢9 for a

stationary process is defined as

012(7') = E[.’Bl(tl)xg(tg)] = E[.’El (t)xg(t — T)] (16)

For the time intervals of interest, the NMIS signals can be treated as stationary. That is,
the correlation function depends only on the time difference between the signals, 7 = t1 —to.
The random variables are the times ¢; and t, of detection events. The function x(t) is a

tally of the number of detections in the interval ¢, ¢ + dt. The expectation operator F|z] is
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defined as
o] [ed]
E[ml(tl)wg(h)] = / / .’L‘ll‘gp(ml,:L‘Q,tl,tg)divldz‘gdtldtg. (17)
—00 J —00

Assuming that the random variables z; and z2 are independent of ¢; and t,, the joint

probability density can be factored so that

E[:El (t1)$2(t2)] = /;Z /;o; .’I?lp(.’l,‘l).’lfg,p($2|$1)d.’1,‘1d$2p(t1,tg)dtldtg (18)

= T1Z2p(t1, t2)dt1dts.

The random variables z; and z9 are counts, following binomial or Poisson probability dis-
tributions.
Focusing now on the time-delay dependent probability distribution, it can be factored

and a delay variable substituted
p(t1,ta)dt1dty = p(t1)p(ta|t1)dt dty
T=1—1
dr = dto
p(T)dT = p(t1)p(t1 + 7|t1)dt1dT.

Then integrating over the remaining time variable leaves C12(7) a function of the delay

variable 7 alone,
Ci2(7) = Elz1(t)z2(t — 7)]

= M/oo p(tl)p(tl + T|t1)dt1 (20)

—0oQ

= T122p(T).

3.3 Correlation function in a thermal neutron system

At this point an example will make clear how this analysis is applied to an actual experiment.
Suppose we have a source which decays at random with an average rate r1. The times of
these decays will be designated by the random variable ¢;. A detector will then detect the
emission from this decay at a time t2. The detection efficiency is unity. The emission is

always detected. The multiplicity of the emission is also unity. The decay always results
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in one emission. Now suppose that the time of detection after emission, 7 = t9 — %1, is

T

e ™D
D

a random variable with the probability density p(7) = . This probability density is
typical of thermal neutron detectors such as those used in traditional multiplicity counting
for NDA. The parameter 7p is called the detector die-away time.

Equation 20 can be used in this example. Because z(¢1) is random, there will be
accidental correlations with z2(t2). The accidental correlations occur at a rate of o Because
every emission is detected, the number of correlations Z1Z2 over a measurement time of t,,

18 T1tm.

From these, the correlation function is calculated:

1 _~
012(7') =1ty <’I"2 + —e TD) . (21)
™D

If detections are tallied in bins of width At and we let 7 = kAt, the correlation becomes

kAt 1 _ .=
ClQ(k’) = / T1tm (TQ + —e TD) dr
(

k-1)At ™D
_At\ kAt
:rltm[mAt+<1—e TD)e TD].

The correlation Ci2(k) represents the expected number of detections accumulated in

(22)

bin k during a measurement time %,,. To demonstrate this result, the source-detector was

and the detector die-away

simulated with 500 decays. The decay rate was set at r; = —10&At’

time was set at 7p = 4At. The results are shown in Figure 6 along with Equation 22.

3.4 Uncorrelated background and accidental correlations

In the previous discussion because x; was a random process, the accidental rate riro was
included in the correlation. This accidental rate occurs even though the two channels were
perfectly correlated. In the previous example, the source rate was 1 per 100 time bins on
average. The detection rate was the same. The accidental count rate was therefore r1ro At
per time bin. These rates produced 5 counts per time bin for the 500 source counts in
the example. If the source rate in this example is increased to 1 per 10 time bins and
the measurement time decreased so that the total source counts is still 500 counts, the

accidental count rate will be 50 counts per time bin as shown in Figure 7.
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Figure 6: Source-detector correlations for a thermal detec-
tor for a source rate of ﬁ. The theoretical curve is from
Equation (22).

Throughout most of this thesis it is assumed that the background and accidentals have

2

been subtracted out. For bicorrelations,” the accidentals include an accidental correlation

with a correlated pair in addition to the uncorrelated triplet rirors.

C123accidental (T12, T13) =r1C23(T3 — T2)
+r2C13(T13)
+1r3C12(T12)
+r17273

It should be understood that the doubles correlations C;; in Equation 23 also have
the background r;r; subtracted out. In addition to accidental coincidences, uncorrelated

background radiation is included in the accidentals in Equation 23.

2 A more detailed treatment of the accidental coincidences and the relation to the covariance can be found
in references [29, 30]
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Figure 7: Source-detector correlations for a thermal detector
for a source rate of ﬁ. The theoretical curve is from Equa-
tion (22).

3.5 Correlation function in a fast neutron system

In this final example the fast detectors used in this research are time correlated with a
fission source. Assume an instrumented fission source has produced N; fissions during a
measurement. Of these e are detected in Channel 1. Each fission will produce 7 gamma
rays and 7 neutrons on average. These are of course the prompt radiations from fission
and will be used that way throughout. The probability of detecting the gamma rays and
neutrons is €; and €, respectively. The total number of fission-gamma and fission-neutron
pairs will then be €;N17e, and ey N1Ve, respectively.

The gamma rays will all arrive at the detector at nearly the same time. We can therefore

represent the time distribution of this arrival time as

da
pg(Tlg) = 5 (7‘12 — ?) (24)
where dy is the distance between the fission source and the detector, 712 is the difference
between the time of detection ¢ and the time of the fission at ¢; and c is the speed of light.

The ¢ can be taken either literally or at least implying a narrow probability distribution.
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The neutron fission spectrum is a function of energy x(E). The energy of a neutron is

related to its velocity by
2
E= lmv2 = 1m (2> . (25)

T12

The relationship between the spectrum as a function of time and the spectrum as a
function of energy is x(7)dr = x(E)dE where % = % Therefore the time distribution of

neutron detections subsequent to a fission can be written

2
Pn(Ti12) = €n(T12)X(T12) = €1 (T12)X (E - lm (@> ) £ (26)

2 T12 T12

Substituting into Equation 20 results in

d
Ci2(m12) = €7 N17¢eg0 <T12 - ?2) + €y N1Dep (T12) X (T12). (27)

A measurement of Ci9(712) is shown in Figure 8. Other correlations can be derived from

this correlation as will be described in the next chapter.
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Figure 8: Measurement of C12(712) in total correlated counts
for a 3-inch detector from the experiment as described in
Chapter 7.
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3.5.1 Detector efficiency in a fast neutron detector

The most important factor affecting efficiency in these experiments is the detector geometry
factor. The geometry factor can be written as g = %. Knoll provides an expression for
Q for a right circular cylinder.>  The cylindrical formula works reasonably well even for
a rectangular detector. The geometry factor for the 3-inch detector at the 23 cm distance
is 8.5x107% and 1.5x1072 for the 4-inch detector. The intrinsic efficiency can also be
considered. The most important feature of the detector intrinsic efficiency is the threshold.
The detectors are virtually blind to neutrons below the threshold of 1 MeV. The intrinsic
efficiency of the detectors can be measured.

The detection efficiency of a detector can be measured from the source detector correla-
tion C12(7), provided that there is a reasonable distance between the source and detector,
and there is no intervening material.[33] The source detector correlation can be converted
to a function of energy by the relation £ = %m (%)2. The correlation C19(E) represents
the number of neutrons in the energy range (E, E + dE) detected per fission. The number
of neutrons in that energy range impinging on the detector can also be predicted. This

number is N(E)dE = vgx(E)dE per 252Cf fission. The efficiency is then*

_ Ciy(B)
- N(E)

eTL(E) (28)

The correlation C15(7) is actually integrated over the range from 7 to 7+ A7. Although
AT is a constant, AE is not. The boundaries of the energy range, E;, F;;1 must there-
fore be integrated over to arrive at the predicted number of neutrons. It then becomes
N(E) = vg | 5 "1 x(E)dE. The average number of neutrons emitted per 2*2Cf fission is

designated as .

An efficiency computed from Equation (28) is shown in Figure 9. Below the thresh-

old of about 1 MeV, no neutrons are detected. The detection efficiency quickly rises to a

3The formula from Reference [24] at page 119 is given in Appendix B.6. A formula for a rectangular
detector form Reference [19] is also given in that appendix.

“This formula assumes that there is a one-to-one correspondence between energy and time of detection.
See reference [11] for an alternative formula.
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Figure 9: Intrinsic neutron detection efficiency computed

from a time-of-flight measurement at 1 m.
peak at about 2.5 MeV. As the neutron energy increases above the threshold the proba-
bility that it deposits enough energy to exceed the threshold increases. At energies above
2.5 MeV, the efficiency gradually declines as the neutron energy increases. This decline
reflects the increasing probability that higher energy neutrons pass through the detector
without interacting. There are alternative models for calculating detection efficiency.[11]

The neutron detection efficiency ¢, is a function of 7 as long as the relation between E,

and 7 holds. The integral
€ — fooo en(T12)X(T12)dT12
" fooo X(Tl2)d712

is the average detection efliciency for fission neutrons. This average is used in traditional

(29)

shift register analysis and will be employed in this research where a time variable is inte-

grated out.

3.6 Error Analysis

An estimate of the correlation function C;;(k) in time bin £ is computed by subtracting the

background r;r; from the total count data R;;(k) and correcting for the window bias with
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the factor W (k). This estimate can be written
C”(k) = Rm(k)W(k) — 5Ty,

The background r;r; is the product of the count rates per bin in each of the two detectors,

= C’éqo where T is the total number of time bins in the entire measurement time. The

T

window bias factor is W (k) = NL_,C The uncertainty in the estimate is then

00y = W2 R (k) + rir; (7 + ) (AT
~ W

(k)+/ Rij (k) (30)

~ \/Cij(k) + 7 (At)2.

The background contribution to the uncertainty can be neglected. The background rate
is 7 x 107® and 2 x 107> per nanosecond in the source and 3-inch detectors respectively.
This produces a background rate in the source-detector cross correlation of 0.14 counts per
second per time bin. The count rate in the neutron peak at 12 ns, on the other hand,
is 80 counts per second per time bin. The total uncertainty in the neutron peak is then
TC(12) = 1.05(80s7 + 1.2 x 10~*s~1)T. The background contribution to the uncertainty
of 1.2 x 107*s~! can clearly be neglected.

In the case of the bicorrelation, the uncertainty can be approximated as

OC(mn) R \/WQ(m’n)R(mn) - rfaé(m_n) + r?-ag,(n) + T%aé(m) a1

The approximation indicates that the error in the r;7;7r; term was neglected because it is
generally small. The window bias factor can also be neglected as long as the time bin & is
small compared to N which is 512.
Marginal correlations are frequently computed in the analysis by integrating over a time
variable. An example would be
o0
Cjk|i(7'jk) = /0 Cijk(Tj,Tjk +Tj)d7'j
o0 (32)

Cirji(n) = » Cir(l,n +1)
1=0
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where 7, = 7j; + 7;. The variance in Cj;(7;x) is then
2 —
Ujk|i(7jk) %/ w (Tj,Tjk-I-Tj)Rijk(Tj,Tjk-f—Tj)de
0

00
~ / Ri]’k(Tj,Tjk -I-Tj)de.
0

The window bias can be ignored for delay times which are much less than the 512 ns window.
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CHAPTER IV

ANALYTICAL EXPRESSIONS AND TEMPORAL
SEPARATION OF NEUTRON AND GAMMA
COINCIDENCES FROM FISSION AND OTHER
SOURCES

This chapter develops a point model for the time dependence of the fission detection pro-

7

cess by fast plastic detectors. In this case, ”point” refers to a spontaneous fission source
localized in space rather than a point reactor which is distributed in space. This chapter
will first show the relationship between the source-detector correlation C12(712), the source-
detector-detector bicorrelation Ci23(712, T13), the detector-detector correlation Caz(Te3) and
the three-detector bicorrelation Cass (723, T24) from a spontaneous fission source.

The purpose of the expressions for the correlations is to predict the temporal regions
in which various combinations of detections occur and to show the relationship between
detection pairs and triples for these combinations. The region on 79 in which fission-
gamma, (fg) detection pairs and fission-neutron (fn) detection pairs will be evident from the
expressions. The regions in the 712, 713 in which fgg, fgn, fng and fnn combinations occur
can be predicted from C193(712,713). Similarly the region in the 793 in which gg, gn, ng and
nn combinations occur will be evident from the expression of Ca3(723). It is not necessary
to know the exact time distribution of the correlations. It is only necessary to know that it
is bounded by the detection of the most energetic neutrons and the detection threshold set
in the constant fraction discriminator. Therefore, an expression for €,(712)x(712) will not
be specified. The fg detection distribution, €40 (7’12 — ‘%2), is only specified to be a narrow
distribution.

The relationship between detection pairs and triples for combinations of gamma rays and
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neutrons will then be analyzed in Sections 4.2 and 4.3 where various ratios will be presented.
From these ratios, detection efficiency and ultimately the number of spontaneous fissions
can be determined. The method and data to calculate the multiplicity moments will be
described in Section 4.4 for both neutrons and gamma rays.

In Section 4.5 the factors affecting the exact time distribution of the correlations will
be discussed. For a fast proton-recoil detection system, these factors include the spatial
distribution of the fissile material,[9] the spatial distribution of scattering material as well
as the multiplication of the fissile material.[31] Unless all but one of these factors are held
constant, it futile to use the time distribution to determine these factors. For example,
to determine the spatial distribution of a spontaneous fission source, Chiang restricted the
distribution to non-multiplying configurations.[9]

Finally, non-fission reactions such as nuclear decay, scattering, and alpha-n reactions

produce correlated detections. These correlations will be described in Section 4.6.

4.1 Source and detector correlations from a point fission source

The first correlation to be considered is between the instrumented source and a detector
separated by a distance ds in air, i.e., there is no intervening material. A mathematical

expression for this correlation was shown from Equation 27 to be

Ci2(112) = Nip(712)
. 9
= Nies [7695 (m - ?) + Ven(T12)x(T12) | -

All of the uncorrelated background has been subtracted from Ci5. Ny represents the num-
ber of fissions occurring in the instrumented source, and ¢; represents the probability of
detecting the fissions in the instrumented source.

It is convenient in the development of the analysis to rewrite the correlation function as

Ci2(12) = Crg(112) + Cpn(m12) Where
_ d
Crg(T12) = Ni€fyegd | T12 — - represents the gamma response, and (34)

Cin(Ti12) = Ni€fUen(12) X(T12) represents the neutron response. (35)
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A measurement of this function is shown in Figure 10 on log scale.!  This measurement
is taken from the source-detector setup described in Chapter 7. The source-to-detector dis-
tance do is 23 cm. The gamma response Cfg(ﬁg) can clearly be seen at % =08 ns. It
has a width of Ay ~ 2 ns. The neutron spectrum Cy,(712) is temporally separated from

d

the gamma peak. It extends from the time the fastest neutrons n; are detected 7; = vy

to the time that the threshold energy neutrons n; are detected 7 = 1%. The threshold is
typically 1 MeV corresponding to neutrons which have a velocity of 1.4 cm/ns. The fast

neutrons have a velocity of about 4.8 cm/ns. This velocity is observed from Figure 10. It

ultimately comes from a combination of the Maxwellian distribution and detection efficiency.
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Figure 10: Measurement of C15(712) in total correlated counts
for a 3-inch detector from the experiment as described in
Chapter 7.

The instrumented source can also be correlated with two detectors. This correlation

is shown in Figure 11 where the source-to-detector distance dy and ds was 23 cm for each

1This correlation is also plotted on linear scale in Figure 40. For comparison, a purely theoretical version
of this correlation can also be seen in Figure 23.
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detector. The correlation function can be written as

C123(T12,T13) = Clgg(T12,T13) + Cran(Ti2, T13) + Crng(T12, 13) + Crnn(Ti2,713).  (36)

Recalling the definition of a correlation from Section 3.2 and assuming the dependence
in the probability of a detection can be factored from the time variable, each term in

Equation (36) can be written

Ctog(mizs ms) = Miegy(y = 1)egd (“2 - %> ’ (Tls - %) (37)
_ do
Crgn(T12,T13) = Niefryeqd (712 - ?) €n(T13)X(713) (38)
Cing(T12,T13) = Niegyegen(Ti2) x(712)0 (713 - d_?) (39)
Cnn(T12,713) = Niesv(v — Den(T12)x(T12)en (T13) X (T13)- (40)
13.0
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Figure 11: Measurement of C93(712,713) in log of total cor-
related counts. The source-to-detector distance is 23 c¢m for
both detectors 2 and 3.
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It is assumed that the only dependence between the correlations is the reduction in the
number of the available radiations after the other detection. The reduction in the number
of radiations is only true if the detectors are separated by a considerable distance. It is not
improbable for a single radiation to register in two adjacent detectors.[43]

The bicorrelation C123(712,713) calculated from the individual terms is shown in Fig-
ure 12. A graph of the equation for the substitution of variables 793 = 713712 is shown in the
figure. Of course that graph represents the family of graphs for all 7o3. The assumption that
the time distribution of the two correlations are independent turns out to be reasonably
correct. In other words, if a fast neutron is detected in one detector, the neutron detected

in the second detector is no less likely to be fast or slow.

2940
26.1
232
20.3
17.4

_—

=

e 145
—

=

T IZ(DS)

Figure 12: Ci2(112)C13(713) with the substitution of variables
T23 = T13 — T12-
Each of these terms can be seen in the actual measured bicorrelation in Figure 11. Each
term is temporally separated from the others in the 72, 713 plane. Each of the four regions

can be defined by rectangular bounds as defined in Table 3. The fissions correlated with
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gamma-gamma, pairs form essentially a point at 7o = %2 and 7113 = %3 with a width of
Ay. The fissions correlated with gamma-neutron pairs form lines parallel to the 712 and
713 axes and a width of A,. The beginning and end of these lines are marked by fast ny
and threshold n; neutrons respectively. The fission-neutron-neutron triplets are bounded

by a rectangle formed from the delay times of each of the four pairs of fast and threshold

neutrons.

Table 3: Temporal bounds for Ci93(712,713) and Cog(To3)

Correlation Combination T19 T13 T23
dy 4 By dy 4 Bg | dzg—ds 4 By
Cfgg fgg c + 2 + 2 c + 2
dy 4 By ds ds _ do
C fgnf c + 2 v vf c
fan dy L A df ds _ d
dy 4 Bg ds d3 _ do
fang ¢ + 2 vt Vg c
da d3 4 By ds _ do
C fnfg v c + 2 c v
fng df d A d df
da ds 4 Bg d3 _ do
fntg V¢ c :l: 2 4 V¢
fngm da ds d3 _ do
it vy vt vt v
da ds
Cfnn fnfnf vf vy )
da ds -
frgmg vt vt
do ds ds _ da
fntnf vt v or V¢

A cross correlation Cy3 between two detectors is shown in Figure 13 on log scale.? A
related detector-detector correlation Cy3); can be derived from the source-detector-detector
correlation by a substitution of variables 703 = 713 — 712 as shown in Figure 12. This
correlation is conditional on a fission being detected in Channel 1. The boundaries of the
four regions of this correlation are determined from this substitution of variables and also
shown in Table 3. This correlation can be thought of as the shadow of the bicorrelation

C123 projected on the 113 axis.

*This correlation is also plotted on linear scale in Figure 41.
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o
Ca3)1(723) Z/ Ci23(T12, T23 + T12)dT12
0

(41)
= Cyg| 11 (23) + Cyn) 1, (23) + Chg| 1, (123) + Crpyj 1, (T23)
where
C _ ol 11,2 oo d2 d13
99| f1 (7-23) - N1€f7(7 - 1)69 0| 12— : 0| To3+ T12 — T dTio
0
— ds —d
= Niepy(y — 1)egd (7'23 - 2) (42)
_ o do
Con|fs (T23) = NiefDyeg 0| T2 — = €n(T23 + T12) X (723 + T12)dT12
0
d d
= Niesvyegey <723 - f) X (723 - f) (43)
[ ds
Cng|f1 (7—23) = N16fl/’)/6g/ en(7-12)X(7'12)5 To3 + T12 — ? dTi19
0
d d
= Nieryegen (:3 - 723) X (?3 - 723> (44)

o0
Crn|fi(T23) = Niegv(v — 1)/ en(T12) X (T12)€n (T23 + T12) X (T23 + T12)dT12 (45)
0

The only difference in the case of the cross correlation Cbg is that the fissions need not

be detected. This difference can be designated by substituting N for N; and setting €; to

C. N . . . .
023;1 = =L. In addition, if the observed fission source N; is the

one. This implies that
only fission source then Ny = N.
Finally, a correlation between three detectors can be measured. Such a correlation is

shown in Figure 14. Again the source-to-detector distance for all three detectors (di, do
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related counts.

38



39

and d3) is 23 cm. An expression for this correlation can be written as

C234(123, T24) = Cogg(T23, T24)

+ Cogn (723, T24) + Cyng(T23, T24) + Crgg(T23, T24)

(46)
+ Cynn (723, To4) + Cpgn (723, T24) + Crng(T03,T24)
+ Chnn (7'237 7-24)
where the eight terms are defined as
Cogg(T23,724) = Ny(y — 1) (v — 2)€g d| T2 — - d | To3 + T2 — =
0
d
-0 (7'24 + 719 — :4) dtio
ds —d dy—d
= Ny(y —1)(y — 2)63)(5 (7’23 -3 . 2) ) (7’24 _H c 2) (47)

— *° d d
Cygn(T23,T24) = NUy(y — 1)63/ d (7’12 - ?2) d (7’23 + T12 — ?3) €n(To4 + T12)
0

- X (724 + T12)dT12

- ds — d d d
= Nﬂ’y(’y - 1)63)(5 (7'23 _3 p 2) €n <7'24 - f) X (7'24 - f) (48)

- oo d
Cyng(T23,T24) = NUy(7y — 1)6_(2;/ 4 (T12 - f) €n(T23 + T12) X (723 + T12)
0

d
-0 (724 + T2 — f) driz
- d d ds —d
= Noy(y — 1)6!2])6,1 (7‘23 - f) X <7'23 - ?2) 0 <T24 _ 3 - 2) (49)

- S d
Chgg(T23,T24) = NUy(7y — 1)63/ €n(T12)x(712)0 <7'23 + T12 — f)
0

d
-0 (7'24 + 112 — ?4) drio (50)

- o0 d
Cynn(T23,T24) = Nv(v — 1)7€g/ 0 (T12 - f) €n(T23 + T12) X (T23 + T12)€n (T24 + T12)
0

- x(724 + Ti2)dT12 (51)
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_ 00 d
Crgn(T23,T24) = Nv(v — 1)76g/ en(T12)x(T12)0 <723 + T2 — g) €n(To4 + T12)
0

- X(T24 + T12)dT12 (52)

- (o]
Chng(T23,T74) = Nv(v — 1)76_(;/ en(T12) X (T12)€n (123 + T12) X (723 + T12)
0

d
-0 (724 + 1192 — ?4) drio (53)

o0
Crnn(T23,724) = Nv(v —1)(v — 2) / en(T12) X (T12)€n (T23 + T12) X (723 + T12)
0
- €n(T24 + T12) X (724 + T12)dT12. (54)

The bicorrelation as computed by Equation (46) is shown in Figure 15. The bicorre-
lation Cb34(723,724) has eight regions formed by all combinations of gamma and neutron
detections in the three detectors. It is calculated in a manner analogous to Ca3(723) from
the three correlations Cia(712), Ci3(m13) and C14(714) and a substitution of the variables
Tog = T13 — T12 and 7To4 = 714 — T12. The correlations have three components: the number
of spontaneous fissions NV, the factorial moments, the detection efficiency for gamma rays
and neutrons, and the time distribution function. An alternative derivation of the factorial

moments is provided in Appendix A.2 with the results in Equation (150).

The boundaries of the eight regions are shown in Table 4. The triplets of gamma ray
detections essentially form a point with a width of A;. The boundary forms a hexagon
from six of the eight combinations of :I:%E. The all minus and all plus combinations occur
within the interior of this region. The triplets of neutrons are also bounded by a hexagon
formed by the six combinations of fast and threshold neutrons. The two combinations with
three fast and three threshold neutrons also occur within the boundary. There are three
regions comprised of two gamma rays correlated with one neutron. Each of these regions

form essentially a line with a width of A,.
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Correlation Combination
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Figure 15: Cy34(723, T24) calculated from Equation (46).

4.2 Ratios of source-detector correlations

Active measurements (source correlated) provide several different ratios between pairs and
triplets of detections. The first which was previously considered is the ratio of the detector

cross-correlation with the source correlated detector cross-correlation.

Cosp(m3) _ Nigg
C23(T23) N1+ N

(55)

In this equation N, is a background source which produces correlated detections in
detectors 2 and 3.>  The background could be a correlated gamma source such as fission
products or 228U alpha decay products. Even an uncorrelated source can produce correlated
detections through detector-detector scattering.[43]

Equation (55) will be examined in more detail here with an example. Assume for the

moment the the background is comprised of gamma ray coincidences produced by beta

3Mattingly makes use of this relation to remove background from the detector-detector correlations. [32]
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decay of fission products. The ratio can be written

Ca311(723) _ _Coalns (123) + Cyn|f, (123) + Crg 1, (123) + Cpp 1, (723)
Co3(13)  Cgg(T23) + Cyn(T23) + Cng(23) + Cnn(T23) + Crgg(T23)

(56)

With a source-to-detector distance of 23 cm for both detectors, the neutron pairs extend
from +12 ns. Beyond this range the nn correlation approaches zero. The ng pairs extend
to -25 ns and the gn pairs extend to 25 ns. Gamma pairs occur between +5 ns. From -25 ns

to -12 ns, all of the terms are zero except C,g s, (T23) and Cpg(723). The ratio becomes

Ca3)1(723) _ Crg|f, (T23)
Co3(T23) Crng(T23)

NiesTyeq [y en(T12)x(T12)0 (723 + T2 — d—g‘) drio

- (57)
Ni7eg [o en(m12)X(112)6 (723 + T2 — df) dti2

_ ey _

= N1 = €f.

The region from 12 ns to 25 ns on the 73 axis is identical. The region at zero %5 ns is
dominated by gamma pairs. Although there are some nn pairs in this region they are lower
by several orders of magnitude. The ratio in this region then becomes

Ca3)1(723) _ Cogl 11 (T23)
Co3(123)  Cyg(T23) + Crgg(T2s

Niepy(y — 1)635 (723 - —d3;d2)

= ——— — (58)
Niy(y = D36 (ras — B282) + Noyy (= D)o (g — %)

_ Niegy(y - 1)
Niy(y = 1) + Neve(yr — 1)

where N, is the number of radioactive decays from the fission products. In the last step,

an assumption was made that the efficiency for detecting gamma rays from fission was the
same as the efficiency for decay gamma rays. This is of course not necessarily so because
of the energy differences. The results of this ratio are shown in Figure 42 in Section 8.1.

A second ratio is the source-detector outer product with the Cia3 correlation,

=2 =2
Cia(r12)Ci3(mis) 7 LA (59)
NiefCros(m12,m13)  ~(y—1) v(v—1) =~

\ ;N , ngorgn

g8 nn
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where each term occupies its own region in the 719, 713 plane. This ratio has the advantage
that both numerator and denominator are source correlated. The background term N is
not present.

The numerator and denominator of this ratio can also be integrated into mo03 = 713 — T2

as follows:
Jo° Ci2(m12)Ci3(T23 + T12)dT12 _ 7 n 7 + 1 . (60)
N16f023|1(723) ’7(7 - 1) V(V - 1)
, ngorgn
gg nn

A similar ratio can be formed from the product of all three source-to-detector correla-
tions: Ci2(m12), Ci3(713) and Ci4(714). This time the ratio is a function of the two variables

Tog = T13 — T12 and To4 = T4 — T12.

J5° Cra(m12)C13(723 + 712) Ca(724 + T12)dT12 _ 3 N 1
(N1€f)?Co3a(T23, T24) yy-1)(y—-2) vv-1)(v-2)
g‘grg nnn
(61)
=2 —2
+ =2 + =
v(y—1) v(v—1)
—_—— ——

ggn, gng, or ngg gIlIl, ngn, or IlIlg
The autocorrelation of the source is also related to source fission rate and fission detec-
tion efficiency. The relation is

011(0) = N1€f + Na (62)

where N, is the number of false fission detections.

4.3 Ratios of detector-detector correlations in passive measurement

Various ratios of the form %lk(%% are possible. For three detectors (2, 3 and 4) there
i 3

are three conditional correlations contained in the bicorrelation Casq(7o3,724). Using the



45

relation 734 = T93 — To4, these three conditional correlations are

o0

Ca3/4(T23) 2/ C234(T23, T24)dT24 (63)
0
o0

Ca4/3(T24) =/ C234(T23, T24)dT23 (64)
0

o0
Cayj2(734) = / C234(T34 + To4, Toa)dTo4
0

o0
=/ C234 (703, To3 — T34)dTo3. (65)
0

The time dependence can be eliminated with a second integration. The equations then

become

o0 o0

Coa34 Z/ / C934(T23, To4)dTo3dTo4 (66)
o Jo

Cou3 Z/ / C934(T23, To4)dTo3d T4 (67)
o Jo

o o
Caypp = / / C934(T34 + Toa, Toa)dTo4dT34
o Jo

(o] o0
= / / C234 (723, T23 — T34)dT23dT34. (68)
o Jo

In addition, the correlations can be separated by reaction type. For example Cj;x(gg|n)
represents a gamma detection in both detector 7 and j given that a neutron was detected
in detector k. This conditional correlation is a function of 7;; and comes from doing the
appropriate integration on Cjjx. It can also conveniently be written as ng|n('rij). Some of

these ratios are
—=— = Ve, (69)

Conlg(Tij)  v(y — 1)6
an(Tij) B ol 7 (70)

an|n(7-ij) _ m
an(Tij) v

€n(Tij)s (71)
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Conlmi)® _ TV
an|g(7-ij) - Nm n( ’LJ)a (72)

(an(Tij))2 - N 527

Iy N 73
an\n(Tij) V(V — 1) 7 ( )
Coaaon _ Ny, (74)
Cynlg
Cnn(Tij)an(Tij) —
= Nve,(7i5), 75
an\n(TZ]) ( J) ( )
C —

Cogg vy = (v = 2)69.

Other ratios are of course conceivable. For example, the ratios involving pairs and

triplets of only neutrons were omitted.

4.4 Multiplicity data

The factorial moments of the neutron and gamma ray multiplicities are calculated from
data from various sources. A description of this data is given in the following two sections.
4.4.1 Neutron multiplicity

Table 5 lists the probabilities for the neutron multiplicities for the spontaneous fissioning
isotopes, 22Cf and 20 Pu.[48] The first two factorial moments are also shown.

4.4.2 Gamma-ray multiplicity

The gamma ray multiplicity distribution from fission, y(G) can be computed using varying
models.[49] One model is the double Poisson model used by Brunson[8] where y represents

the number of prompt fission gamma rays.

(77)
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Table 5: Neutron multiplicities and factorial

moments

252 Cf

Pu

DPv

Dv

O 0~k wN K~ O]

0.00211
0.02467
0.12290
0.27144
0.30763
0.18770
0.06770
0.01406
0.00167
0.00010

0.0631852
0.2319644
0.3333230
0.2528207
0.0986461
0.0180199
0.0020406

0.0

0.0

0.0

N

v(v—1)
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Figure 16: Neutron multiplicities for 252Cf and 240 Pu.
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The major drawback with this model is that three constants, C7, Co, and C3 must be de-
rived. A model that only requires two parameters is the negative binomial distribution[49].

This distribution is
o +4 -1\ o
p(v) = ( , o pt=py (78)
where o is computed from the relative width D, as shown in Equation (79) and p is

computed from o/ and G as shown in Equation (80).

1
I __
“~D, -1 (79)
al
_ 80
L (80)

From Equation (78) the following prompt fission gamma ray multiplicities were calcu-

lated for 22Cf and ?*° Pu as shown in Table 6 and is plotted in Figure 17.
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Figure 17: Gamma ray multiplicities for 2°>Cf and 240 Pu.



Table 6: Gamma-ray multiplicities and facto-

rial moments

252Cf 240Pu

ot p(7) p(7)
0 1.81e-03 | 5.14e-03
1 9.19e-03 | 2.26e-02
2 2.50e-02 | 5.31e-02
3 4.85¢-02 | 8.89e-02
4 7.48e-02 | 1.19e-01
5 9.78¢-02 | 1.34e-01
6 1.12¢-01 | 1.33e-01
7 1.17e-01 | 1.19e-01
8 1.11e-01 | 9.82e-02
9 9.86e-02 | 7.53e-02
10 8.23¢-02 | 5.43e-02
11 6.52e-02 | 3.72e-02
12 4.93e-02 | 2.43e-02
13 3.58¢-02 | 1.52e-02
14 2.51e-02 | 9.22e-03
15 1.70e-02 | 5.40e-03
16 1.12e-02 | 3.07e-03
17 7.17e-03 | 1.70e-03
18 4.48e-03 | 9.19e-04
19 2.74e-03 | 4.86e-04
20 1.64e-03 | 2.51e-04
21 9.65e-04 | 1.28e-04
22 5.57e-04 | 6.37e-05
23 3.17e-04 | 3.13e-05
24 1.77e-04 | 1.51e-05
25 9.78e-05 | 7.22e-06
5 7.98 6.40
vy —1) 68.15 43.88
y(y—=1)(y—2) | 620.18 | 320.81
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4.5 Factors affecting time distribution of correlations

For a point fission source with no intervening material between the source and detector,
there is a direct relationship between neutron energy and the delay variable 71;. This
relation was set out in Equation (25). The experiment described in Chapter 7 also roughly
satisfies this condition, and the temporal bounds summarized in Tables 3 and 4 assume this
condition. Generally in an NDA measurement, this condition will not hold. The material
will be spatially distributed. The material may be in a matrix and also in a container.
These conditions will affect the time correlations. In addition spontaneous fissions in one
isotope may induce fissions in another isotope. This multiplication process will also effect
the time correlations as well as the multiplicity moments. Each of these factors will be
considered in more detail below.

The effect of these factors on the time distribution can be easily incorporated in the
equations for the correlations previously described in this chapter. One merely needs to
reinterpret €,(7) to include the effects of spatial distribution of the spontaneous fissioning
material, scattering and multiplication. In addition, the temporal bounds summarized in
Tables 3 and 4 can also be adjusted to take into account these additional factors. The effect
will be more overlap primarily between the nn pairs and the ng regions; and nnn triplets

and both ggn and gnn regions.

4.5.1 Spatial distribution of material

Gamma-neutron temporal separation is not limited to a point source. As was previously
shown, the detector correlations depend on the spatial distribution of the fissile material.[9]
Although almost too trivial to state, the temporal boundaries in Tables 3 and 4 need a
simple adjustment. The maximum distance d; from detector ¢ to any part of the sample
should be used with respect to the threshold neutrons v;. Conversely, the minimum distance
should be used with respect to the fast neutrons, v;. The parameter A, should be made

no smaller than QLC where [ is the largest chord length through the sample.
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4.5.2 Scattering in matrix and surrounding materials

Scattering in matrix and adjacent materials will broaden both 6(7) and e,(7)x(r) distri-
butions. This broadening will generally be toward longer delays. The scattered gamma
rays will continue at the speed c. Scattering merely increases their effective path length to
the detector. For neutrons, scattering not only increases the path length, but also always
reduces the speed of the exiting neutron. There is however a limitation on the speed reduc-
tion because of the detector threshold. There is an exception to the increase in delay from
scattering. The gamma from an inelastic scattered neutron can arrive before the original
neutron would have. In any event the effect of scattering as well as spatial distribution of
the sample material can be observed directly from the correlations.

In addition, scattering materials, which are not in the direct line of sight between the
radiation source and the detector, will increase the number of radiations detected through
scattering into the detector. Conversely, scattering material located directly in the line of
sight between the radiation source and the detector will scatter radiations away from the de-
tector preventing detection. Consequently, elastic scattering has a significant effect on both

the magnitude and shape of both source-detector as well as detector-detector correlations.

4.5.3 Neutron multiplication

The multiplication process also broadens both ¢(7) and €,(7)x(7) distributions. This effect
is of course intertwined with spatial distribution and scattering. The probability of induced
fission depend on the spatial distribution of the fissile material. In addition the probability
of an induced fission increases as the energy of the neutrons are reduced through scattering.
The effect on the time distribution of detections from the neutron multiplication process

will be considered again in Section 5.1 in the chapter on multiplication.

4.6 Correlated detections from non-fission reactions

A number of background interactions can produce correlated detections. Beta decay, which

is common among fission products, will produce correlated gamma detections. Neutron
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capture is frequently followed by a cascade of one or more gamma rays. These gamma
rays will produce correlated gamma, detections. In addition, neutron scattering interactions
can produce correlations between gamma rays or between gamma rays and neutrons. Also
common in the assay of nuclear materials are (a,n) reactions which produce a neutron
and a cascade of up to several gamma rays. These reactions will also produce gamma ray
coincidences as well as gamma-neutron coincidences between detectors. These reactions will
be considered in some detail.

Both inelastic scattering and alpha-n («,n) reactions will cause gamma-neutron corre-
lations. This correlation makes both gamma-neutron correlations as well as g-g-n bicorrela-
tions a suspect signature of fission. Both of these reactions will be discussed in more detail
in the following subsections.

The multiplicity moments of these correlations are summarized below in Table 7.

4.6.1 Nuclear decay

Fission products, some alpha decay products, and the products of neutron capture are
typically radioactive. This radioactive decay is typically accompanied by a number of
gamma rays. These gamma rays will produce gg as well as ggg coincidences. The equation
for the gg correlation is virtually identical to that for the Cyy component for fission. It can

be written as

v — 1) ds —d
ng\r(ﬁ?’) = Nevr(yr — 1)63(5 <T23 _ 3 ; 2) (81)

where N, is the number of such decays and <, is the multiplicity for the decay. The

correlation for gamma triplets for nuclear decay is

ds —d ds — d
Cogolr (123, T24) = Neyy (7 — 1) (77 — 2)€56 (723 -2 . 2) 0 <T24 - - 2) . (82)

The gamma detection efficiency €, will probably be different for gamma rays from radioac-

tive decay than for gamma rays from fission.
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4.6.2 Elastic scattering

Elastic scattering can produce detector-detector correlations through cross-talk[43, 15, 18,
26, 53, 42] between the detectors. This arises when a neutron scatters from one detector
to another while depositing enough energy in each for a detection. All elastic scattering
delays the detection of the neutron. The distance the neutron travels from its birth to
detection will always be increased by elastic scatter. In addition the velocity of the neutron
will be decreased after the scatter. This effect will fortunately not cause aliasing among the
correlated pairs or triplets. On the other hand, elastic as well as inelastic scattering will

cause aliasing in a Rossi-alpha measurement.

4.6.3 Inelastic scattering

Inelastic scattering will produce all of the effects that elastic scattering produces. In ad-
dition, gamma rays are generated in the inelastic scattering process. One consequence of
these gamma rays is that, unlike elastic scattering, the delay of the detection can be de-
creased. In addition, detection of the scattered neutron will be correlated with the detection
of these gamma, rays. Therefore inelastic scattering in any material in the detector or in the
proximity of the detector will generate both gg and ng correlations. Proximity is relative to
the distances from the source to detectors. Consequently, inelastic scattering will produce
detector-detector correlations analogous to that produced by fission except that there will

be no neutron-neutron pairs. This correlation is

Co31i(T23) = Cogli(T23) + Cynji(723) + Cngli(723) (83)
where
POTVED) ds —d
Cup(r) = N =T (- B2 o
d d
Conti(T23) = NiYiegen <T23 B ?2) Xi (TQS a ?2) (85)

d d
Chgli(T23) = NiYiegen (FS - TQS) Xi (?3 - 723) : (86)



55

The spectrum of scattered neutrons x;(7) will depend on the incident neutron spectrum

as well as the scattering material. The bicorrelation can be written

C934)i(T23, Toa) = Cygg1i(T23, T21)

(87)
+ ngn‘i(TQ?n 7-24) + an_q|i(7-23a T24) + Cngg‘i(7-237 T24)
where the four terms are defined as
dy — & dy_a
Cogoli (723, T24) =Niyi(vi — 1) (73 — 2)€30 | 123 — el G TR (88)

_ ds —d d d
ngn|i(723,724) =Nyyi(v — 1)652,5 (723 -2 c 2) €n (724 - —2) Xi (724 - f) (89)

Cc

_— dy — d d d
Cyngli(T23, T24) =Nivi(vi — 1)€26 (m - - 2) €n (ng - f) Xi (723 - f) (90)

- o d
Chggli(T23, T24) =Nivi(vi — 1)652,/ en(T12)Xi(T12)0 (7'23 + T2 — f)
0

d
-6 <724 + T2 — ?4) dria. (91)

There will be no nn pairs or nnn triplets produced by inelastic scattering of single neutrons
alone.

The detector-detector correlation from inelastic scattering was simulated in MCNP-
POLIML[27, 28]* A small cylindrical lead target was placed between two large detectors.
The lead target was 1 cm in diameter 50 cm long. The distance between the detectors was
50.6 cm. The detectors were 5 cm thick with a 50 cm square face. A 14 MeV neutron pencil
beam impinged on the target at right angles with the line between the two detectors on one
end of the cylindrical target. This geometry maximized the probability of a neutron inter-
action in the target and also minimizes the probability that a gamma ray will interact in

the target. The resulting corelation from one-million source neutrons is shown in Figure 18.

“The Monte Carlo code MCNP4C and the derivative MCNP-DSP[47] do not preserve the number of
gamma rays generated by the inelastic scatter of neutrons.[28]
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Figure 18: Cross correlations from the inelastic scattering of
14 MeV neutrons on a lead target between two detectors.

4.6.4 Alpha-n (a,n) reactions

Neutrons produced by («, n) reactions in nuclear materials can be considerable if the chem-
ical composition is in the form of PuQOy, PuFy, UOs, or UFgz. The isotopic composition of
the oxide or fluoride will also greatly influence the (o, n) reaction rate. All of the uranium
and plutonium isotopes are alpha emitters. The («,n) reaction rate will be greater if the
isotopic composition is rich in isotopes with a high specific alpha activity.

These (@, n) reactions are accompanied by gamma rays. These gamma rays can arise
from several sources. First, although generally very low in probability, the alpha decay
may be accompanied by gamma emission. Second, the target nuclei may be left in an
excited state after the reaction with the alpha particle resulting in the emission of one or
more gamma rays along with the neutron. In addition, the neutron emitted may generate
gamma, rays through inelastic scattering. All of these sources of gamma rays will produce
detector-detector correlations between the neutrons and gamma rays.

The correlations produced by (a,n) are completely analogous to those produced by in-

elastic scattering with the appropriate neutron spectrum, x,(7) and gamma ray multiplicity
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Yo substituted. As with inelastic scattering, there will be few nn pairs.®

An experiment was performed to demonstrate the detector-detector correlation produced
by an (a,n) source. The source was a Pu-Be source. The source contained 79.67 g of

plutonium with an isotopic composition shown in Table 8. Neutrons are generated by the

reaction

‘Be+*a — 2C+'n+5.708 MeV.

detector 4

storage well

BC420 | pmT m:

Pu-Be source

storage
barrel

N

detector 3

Figure 19: Experimental setup for the Pu-Be experiment.

The threshold of the reaction is about 1 MeV. The 2C can be in the ground state or
a 4.43 MeV excited state accompanied by a 4.43 MeV gamma ray or 7.65 MeV excited
state accompanied by a 4.43 MeV and a 3.22 MeV gamma ray typically. The probability

of the second excited level increases rapidly for alpha rays above 4 MeV. According to

5A small number of neutron pairs can be produced through (n, 2n) reactions.[14]
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documentation on the Pu-Be source it produced nearly 5x10% n/s. Of these only 2x10~*

are from the spontaneous fission of 240 Py and %42 Pu.5

Table 8: Isotopic composition of the Pu-Be source

Isotope % by mass

239 py, 89.708
240 py, 9.249
242 py, 1.043

The Pu-Be source was placed about 2 ¢m from the center of a drum on top of the
moderating material’ which was 77.5 cm above the floor. The geometry of the setup
is shown in Figure 19. The asymmetry from not centering the source can be seen in the
cross correlations in Figure 20. Three, 4-inch detectors were placed around the drum in an
equilateral triangle at the level of the source. The center of the detector was 79.5 cm above
the floor. The distance between the detectors was 43 cm. The distance from each detector

to the center of the drum was 25 cm.

4.6.5 Combined reactions

In the previous subsections, each interaction was treated in isolation. In reality the in-
teractions can occur in sequence. An example might be a fission followed by the inelastic
scatter of a neutron. This combination of reactions is shown schematically in Figure 21.
The time of fission is designated at time zero. Detector 2 detects a gamma from the fission
at time 7,. A neutron from the fission undergoes an inelastic scatter at time 7,. This same
neutron is then detected in detector 3, 7. after the scatter. A gamma ray from the inelastic

scatter is then detected in detector 4, 74 after the inelastic scatter. The times of each of

5The specific neutron emissions from spontaneous fission from these isotopes are given in Section 2.2 in
Table 1.
"The moderating material was water equivalent polyester.



Count Rate
(1/s)

0WHH111111111111LHWIH?HJL?LHMHH?HII:LIH:
-30 -25 -20 -15 -10 -5 0 5 10 15 20
Time Lag
(ns)

Figure 20: Cross correlations from a Pu-Be source.

the detections is as follows:

T12 = Tq

T13 = Tp + Te

T4 = Tp + T4-

Figure 21: Fission followed by an inelastic scatter of a neu-

tron.
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These detections would appear at the following location in the Cogy (723, T24) correlation:

To3 =T13 —TI2 =Tp +Tc — Tq

To4 = T13 — T12 = Tp + T4 — Ta-

Note that 7, — 7, appears in both time axes. This portion of the delay therefore appears on

the 193 = 794 diagonal.
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CHAPTER V

NEUTRON MULTIPLICATION

In this chapter the effects of neutron multiplication on FMD will be described. In Ap-
pendix A.3 the multiplicity moments resulting from multiplication are derived using proba-
bility generating functions. In this chapter the moments will be presented in a more intuitive
fashion. In addition the effect on the time distribution of the correlations will be described.
First the treatment of multiplication in traditional shift register analysis and TIA will be
described.

Multiplication effects are handled in the traditional shift-register analysis through the
super-fission approach developed by Bohnel.[6] This approach treats the multiplication pro-
cess as occurring instantaneously with the initiating fission event. This approach is satis-
factory when the duration of the multiplication process is short compared to the detector
system response time, or when all of the time variables are integrated out. Both conditions
apply in the case of shift register analysis.

According to Bohnel the non-multiplying factorial moments can be replaced with the

multiplying version as follows:

UV — Mvg

_ M-1
viv—-1) — M? [1/52 + ( 1) 1/511/Z'2:|

Vi1 —

M -1
I/il—l

M —1\2
+3 (1/1'1 — 1) 11511/1-22]

where vy, Vi, are the nth reduced factorial moments of the spontaneous and induced fission

D=0 — M [+ (221 Bravia + vl

distributions respectively as used in Equation 6. For example vy is merely vg(vs — 1).
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Equation (92) is derived in Appendix A.3 using probability generating functions as Bohnel
did.

These multiplying factorial moments are used in shift register analysis as was seen in
Equation (6) and also replace the factorial moments in Equations (10) and (12) in TIA
when the fission process is fast compared to the detector die-away time.

The leakage multiplication factor M is defined as follows. If a neutron is introduced into
a fissile system with a probability p of inducing a fission, there will be py; neutrons after
the first fission on average. Each of these neutrons has a probability p of inducing another
fission and producing 7; more neutrons. The number of neutrons after an infinite number

of generations is then

1

m=3 ()" =1 o (93)
n=0 t

The product pv; is designated as k.sp. If the probability that a neutron leaks from the

system is 1 — p, then the leakage multiplication is

1—py; 1 —keyr

The leakage multiplication factor M also comes from the derivation of the multiplying

factorial moments derived in Appendix A.3. See specifically Equation (157).!

5.1 The time evolution of the multiplication process

In TTA the time variables are not integrated out. Therefore, if the duration of the mul-
tiplication process is comparable or long compared with the detector die-away time, the
super-fission approach is not applicable. In this case, Baeten makes the reasonable assump-

tion that the neutron population evolves according to the differential equation

dn
5 = on (95)

1—keyr
l

where o = is the Rossi-alpha and [ is the mean neutron lifetime. This equation

comes from the simple point reactor model. The higher-order time correlations are built up

!This definition of the leakage multiplication assumes that the probability that a neutron is captured
through a non-fission event p. is negligible. If p. is not negligible, an additional unknown is introduced. The
effect is derived in Appendix A.5
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from this model.? At all times, the amplitude (independent of time) is separable from
the exponential time distribution in the point reactor derivations.

The solution to Equation (95) is

n(t) = . (96)

As was shown in Section 3.2 the the probability time distribution p(7) can be separated
from the amplitude of the correlation. This probability density in the case of Equation (96)
is

p(1) = ae™". (97)

A graph of this probability density for M = 1.2 and a = - is shown in Figure 22. This

dns

probability density will be used as an example throughout this section. The probability p(7)

is not restricted to an exponential as in this example however.

l E T T T T E
0.1 =
B I _
= 0.01 £ E
0.001 -
0‘0001 ‘ 1 | 1 | 1 | 1
0 10 20 30 40 50
T (ns)

—at

Figure 22: Probability of induced fission: p(7) = ae

Assume that the time of a detection 74 after a fission is a random variable and has the

See Reference [1] at page 90. Mattingly derived similar equations using the point reactor model [30].
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probability density p4(74) where p4(74) = €,0(74) + €,(74)x(74). This probability density,
which was developed in Section 3.5 and Chapter 4, is shown in Figure 23. Assume, in
addition, that the time of an induced fission after a spontaneous fission 7; is a random
variable with the probability density ps(7¢). For illustrative purposes it will be assumed
that ps(7y) is defined by Equation (97). The time of a detection of a fission 7 following a
spontaneous fission is then 7 = 7 + 74 for fast recoil detectors. It is reasonable that 7 and
74 are independent. The probability density of a detection following a spontaneous fission
is
o0

p(r) = [ psteppatr = )y, (98)

This result is a well known property of the sum of independent random variables.?
A graph of this equation is shown in Figure 23. This probability density which can be
decomposed into py(7) and py,(7) is then used to calculate C12(712) as shown in Section 3.5.
This correlation can then be used to derive the higher order correlations according to the
method described in Section 4.1. The only difference is that the factorial moments used
to determine the amplitude of the correlation must be replaced with the multiplying fac-
torial moments which are derived in Appendix A and described in the Sections 5.2 to 5.4.
Notice from Figure 23 that the gamma portion of the probability density has two distinct
components. The first approximate delta function results from spontaneous fissions. The
exponential portion comes from the induced fissions. The relative amplitude of these two
components can be seen in the factorial moment in Equation (101) which will be described
later in Section 5.3.

The probability density for the detector-detector correlation with multiplication is shown
in Figure 24 along with the non-multiplying version. Each of the four components, gg, gn,
ng and nn, are shown along with the total. The dependencies and amplitude information is
assumed to be contained in the factorial moments. Similarly the three-detector probability
density with multiplication is shown in Figure 26. The eight regions for each triplet of

neutron and gamma combinations are visible. For comparison, the non-multiplying version

3See Reference [13] at page 126.
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Figure 23: Theoretical pi2(712) convolved with exponential

fission distribution: M = 1.2, a = ;=

is shown in Figure 25.

5.2 Neutron singles, doubles and triples

The moments for neutron singles, doubles and triples have already been derived by Béhnel. [6]
These moments are shown in Equation (92). The diagrams from reactor dynamics used by
Mattingly [30] and Baeten [1] are shown in Figures 27, 28 and 29. The first dark circle
represents a spontaneous fission. In the case of a single detection, the 75 neutrons from
this spontaneous fission induce more fissions. This fission chain is represented by a solid
line. Finally, of the neutrons generated by this process, one is detected. This detection is
represented by an open circle.

There are an average of s neutrons from this spontaneous fission. If we call the average
number of induced fissions f;, there are v;f; neutrons generated from induced fission. Of

these, 1 — p escape the system and are available for detection. Therefore,

Mvs = (1-p)[Us + fivi].- (99)
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= L o--e ng with multiplication 2
- 4--a nn with multiplication B
= —— Total with nltiplication <

p (1:23)

le-05 —
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Figure 24: Comparison of theoretical pog(723) with and with-
1

out multiplication: M = 1.2, @ = —.

From this equation, noting from Equation (94) that p = %, the total number of

induced fissions from a spontaneous fission is

=Ml (100)

Vi—l

The diagram for a pair of neutron detections is shown in Figure 28. These two neutrons
can be traced back to a single fission in the multiplication process. This parent fission
can be either the spontaneous fission or an induced fission. Both of these cases can be
seen in the figure. These two cases also produce two terms in the multiplicity moment
as seen in the second line of Equation (92). In the case of double neutron detections the
moment is proportional to the leakage multiplication squared. When the parent fission is
the spontaneous fission, the moment is proportional to v4(rv; —1). When the parent fission
is an induced fission, the moment is proportional to the number of fissions f; and v;(v; — 1).

Figure 29 shows the four combinations of triple neutron detections. As expected, the
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e— o
Vs

Figure 27: Neutron singles. The solid line represents a fission
chain reaction process.

Vg Vs V’L
Figure 28: Neutron doubles.

third line of Equation (92) has four terms. The parent fission can be the same for all three
neutrons or two neutrons can come from one parent fission and the third neutron from
another fission. The parent fission can also be either a spontaneous fission or an induced
fission. When all three neutrons arise from an induced fission, the multiplicity moment is
M3v4(vs — 1)(vs — 2). In the case of all three neutrons coming from a single induce fission,

the multiplicity moment is f; M3v;(v; — 1)(v; — 2).

Vg Vg Vl

Vg

Figure 29: Neutron Triples.

The two fission parent cases can either involve a spontaneous fission or induced fission.
In the case of two induced fissions, a f? factor is present. When one of the two fission
parents is a spontaneous fission, the second reduced moments v;(v; — 1) and vs(vs — 1) are

involved. Both of these cases have a factor of three in the moment.
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Why is there no case in Figure 29 involving two neutrons from a spontaneous fission and
the third from an induced fission? This case reduces to three neutrons from spontaneous
fission. Remember that each solid line represents a fission chain. The nodes are the common

ancestor of the neutron.

5.3 Gamma singles, doubles and triples

The detection combinations for gamma rays in the fission multiplication process are shown
in Figures 30, 31 and 32. The connection between the generation of a gamma ray by
fission, represented by a solid circle, and its detection, represented by an open circle, is a
dotted line. The dotted line indicates that this process, unlike a neutron, does not involve
multiplication.

The two possible single gamma detections are shown in Figure 30. The gamma can
come from the 7, gamma rays from a spontaneous fission or from the ; gamma rays
from f; induced fissions. The multiplicity moment for gamma rays should be replaced for

multiplication as follows

M—-1
Y Ys1+ ( Vs1> Vi1 (101)
Vi1 — 1
Vs Us Yi
[ o o
“

Figure 30: Gamma singles. The solid line represents a fission
chain reaction process. The dotted line is a non-multiplying
process.

The three combinations of gamma pairs are shown in Figure 31. The pair of gamma
rays can come from the spontaneous fission, one of the f; induced fissions, or one from each.
The second reduced factorial moment for gamma rays should therefore be replaced by

three terms as follows:

21

— M1 M-1
Yy —1) — Y2 +2 (V — 11/31) Ys1%i1 + ( 1/51> Yi2 (102)

l/ﬂ—l
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Figure 31: Gamma pairs.

The four combinations of gamma triplets are shown in Figure 32. The factorial moment

for these triplets is

Yy =1)(y —2) — ys3+3 < Vsl) Vs2Vil

Vi1 — 1
(103)
M-1 \? M-1 \°
+3 Vst | Ys1%i2 + Vst | i3
Vi1 — 1 Vi1 — 1
0
Vs Yo
o—&:—\ ------- o}
o
0 )
s Vg Yi .
® - o) o—c
Vs el
o "o
’O ’,O
Vs " i |
Vs
o

Figure 32: Gamma triples.
It should now be obvious how the four terms in Equation (103) relate to the four combina-

tions in Figure 32.
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5.4 Gamma-neutron combinations

The gamma-neutron combinations, gn, ggn and gnn, are shown in Figures 33, 34 and 35.
As usual, there is a term for each combination. Fortunately, the moments are merely the
product of the individual gamma and neutron moments from Sections 5.3 and 5.2. The
factor of two in the gn moment in Equation (104) represents that it is comprised of both
gn and ng. Similarly, the factor of three in the ggn moment in Equation (105) represents
the three combinations ggn, gng and ngg. The g in the gnn combination also has three
positions as evident in the moment in Equation (106). The three combinations are separate
and distinct in delay time as seen in Figures 14 and 15 in Chapter 4 and Figures 25 and 26

in this chapter.

Vs Vs PY’L
") e o o
Vs e .
o o

Figure 33: Gamma-neutron detection pairs.

o M-1
vy — 2Mvg |:'Ysl + ( Vsl) 7i1:| (104)
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Figure 34: Gamma-gamma-neutron detection triples.

M—-1

Y(y = 1)7 — 3Mvg {752 +2 (ﬁ”sl) Vs1Vil
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<M— 1 )2 }
+ Vs1 | Yi2
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Vs Yi

Figure 35: Gamma-neutron-neutron detection triples.

- M—-1 M-1
(o = 1) —» 317 [ n ( ) ] {%1 T ( - 1) 7} (106)

vii—1 Vi1



73

CHAPTER VI

DETECTOR DEAD-TIME AND ALTERNATIVE

ANALYSIS

Both the source and detector dead-time have a time dependent effect on NMIS correlations.
Dead-time is determined primarily by the pulse width setting on the CFD. The source-

1 The detected correlation

detector correlation can easily be corrected for dead-time.
with dead-time is proportional to the probability of a detection at time 7 after fission, p(7),
minus the probability that the detector is dead at 7. The detector is dead if a detection

precedes 7 within the dead-time 74. This probability can be written as

)= [ 0 (107

where p'(t|7) is the probability of a detection at time ¢ after a fission, including dead-time
loss, given that a detection occurred at 7. The probability of a detection at time 7 after a

fission, also including the effect of dead-time, is then

po)=p0) 1= [ pin). (108)
T—Tq
The true probability of detection p(7) without dead-time is then

p'(r)
p(tr)dt

pr) = 7 (109)

_

Because the detection efficiency in these experiments is low, dead-time is not extremely
important. Figure 36 shows a typical source-detector correlation along with the probability
of dead-time loss from Equation 107. Because the probability of dead-time loss is much less

than one (on the order of 1072), the correction is inconsequential.

' A similar analysis is performed in reference [54].
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Figure 36: Source-detector correlation along with the proba-
bility of dead-time loss from Equation 107.

The source in the above analysis can be thought of as perfectly efficient with no dead-
time. Such a source is useful as an unobserved source in deriving detector-detector cor-
relations. A real, observed source is also characterized by the above analysis even when
dead-time is considered. The only provision is that the source is not multiplying as is typ-
ically the case in an observed source. Fissions in a non-multiplying source occur with a
probability that is uniformly distributed in time. Therefore source detection dead-time re-
duces the probability of pair detection independent of time. It merely scales the correlation
just as source detection efficiency does.

The effect of dead-time can also be seen in the autocorrelation of either a detector or
the source. This observation is a convenient way to measure and characterize detector
dead-time.[40]

As shown in Section 4.1, the detector-detector correlation can be derived from unob-

served source detector correlations as

o0
p23(T23) = / p12(T12)p13(T23 + T12)|T)dT12. (110)

—oQ

In terms of the dead-time correction from Equation 98 and assuming independence, the
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detector-detector correlation is

poa(T23) = /oo Pho(T12)Pl5(T23 + T12) dris (111)
" .
—o (1= [ p ) (1= [0 v (o)

In the detector-detector correlation, the source detector correlations are generally un-
observed. Without the source correlations the dead-time correction cannot be made. A
similar problem arises in the well counter.

Without dead-time, the correlation between the source and detector in NMIS is

Cia = 7Yeg4b (T - g) + ven(7)x(7). (112)

Consider first the gamma, rays. The probability of detecting a gamma ray is equal to
the detection efficiency times the number of gamma rays, veq, or ye, on average. Because
of dead-time only one of the 7 gamma rays can be detected. Therefore the probability
becomes 1 —p(0), i.e., the probability of detecting not-zero gamma rays. From the binomial

distribution this probability is

Yy -1
1—(1—€g) =rveq — (2 )6!2]+ € —

(113)

In the binomial expansion, there can be only v + 1 terms, and furthermore small values of
€, make some of these inconsequential.

A formalism was developed by Van der Werf[52] to infer multiplicity in the case of N
detectors when a detector could register either a detection or miss from a multiplet event,
i. e., two or more hits are indistinguishable from one hit.? Let k£ be the number of vy
gamma, rays which strike any of N detectors. The probability of k£ hits on N detectors from

v gamma rays is
(k) = () ) (Neg)* (1 = Neg) =+ (114)
pr(kly) = { €g €g .
Of the k hits on the N detectors, the probability that they are distributed over n of the

N detectors is

pn(nk) = (]Z) ]’;—!ks,(c”) (115)

?Additional discussion of the derivation can be found in reference [8] at pages 35 and 75.
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where S,(Cn) is the Stirling numbers of the second kind. The Stirling number describes the
number of ways a set with k elements can be partitioned into n disjoint, non-empty subsets.
The probability of n of N detectors being triggered by v gamma, rays is then the product

of the foregoing:

pn(nly) = (Z) k!e’;(l — Neg)77* (Z) S,(Cn). (116)
In this form, the Stirling numbers can be tabulated in advance. Typically the equation
is manipulated into the following form:
pwnb) = (V) S0 (1) 11— (v -l (117)
i=0
This formula has been extended to include cross-talk from scatter between detectors?
pwn) = (V) 0= () - W el sa-N el @9
i=0
where f is the probability that a radiation detected in one detector escapes and is detected
in another detector. This correction for cross-talk will not be used here. First, the geometry
of the experiments was chosen to minimize the cross-talk. Second, when cross-talk becomes
significant, the time correlation characteristics will be useful in identifying it.*

Using Equation 117 for one detector, the probability of detecting zero of v, gamma rays

and one of v, gamma rays is

p1(0]y) = (1 —¢g)?
Yvy=1) o y(y-1H( -2

_ 3
=1—¢€7+ o1 €g — 3l €t - (119)
pi(lly) =1-(1-¢)”
=1 o 20y =-1D(r=2) 3
= €gY — o1 €yt 3l €t .

The second line of each equation is the binomial expansion.

3This formulation is typically used in physics experiments[38, 39].
“See Reference [43)].
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For two detectors, the probability of detecting 0, 1 or 2 gamma rays out of v emitted is

p2(0ly) = (1 —2¢)”
4
=1—2e0y +y(y —1)262 —y(y — 1)(7 - 2)563 + .

p2(1ly) = 2[(1 — €g)7 = (1 = 2¢)"]
. (120)
=2¢g7 =7(y = )3 + (v = 1)(7 —2) 3¢5 — -
p2(2l7) = 14 (1 —2¢5)" —2(1 —¢)?
=v(y =g —v(y =)y — 2)&) + .-
For three detectors, the probability of detecting 0, 1, 2 or 3 gamma rays out of v emitted
is
p3(0]y) = (1 —3eg)”

9 9
=1-3¢p7+(y = Dgeg —v(v =Dy = 255 + -

p3(lly) = 3[(1 — 2¢)” — (1 — 3ey)"]
15, 19

=3¢y =y N5 e +y(y -y - 2)362 + .. (121)

p3(27) = 3[(1 — 3€g)” — 2(1 — 2¢¢)" + (1 — ¢4)"]
=(y — 1)363 —y(y—=1)(y - 2)663 + ..

p3(3l7) =1 —(1—3eg)” +3(1 — 2¢4)7 — 3(1 — ¢y)"”

— oy = D)y = 2) =y = 1)y = 2)(y = B) el + ..

129
After the detection of a gamma ray, the detector will be dead not only for subsequent
gamma rays but also for the detection of neutrons for a period of 73. The probability of this
dead-time is equal to the probability of detecting a gamma 1—(1—¢,4)” = €47y. Practically, 74
extends over a substantial portion of the neutron distribution. Furthermore, it can easily be

extended to cover virtually all subsequent neutrons. To simplify the analysis it is assumed

that 74 covers virtually all subsequent neutrons.
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For a single detector

p(n) = p1(0]y)p1(1[v)
= (1 - 69)7[1 - (1 - en)u]

~ en(l — €g7)

(122)
p(9) = p1(17)po(0|v)
=1-(1- fg)fy
R €gy-

These equations should satisfy one’s intuition. A neutron can be detected only if no
gamma is detected. In addition, po(0|r) = 1 can be thought of as the conditional probability
pi(n|g). In other words if a gamma is detected in the only detector, the probability of
detecting zero neutrons is a certainty.

The approximations in these equations come from keeping the first nonzero term from
the binomial expansion. The approximation represents the case of very low detection effi-
ciency and agrees with the probabilities for no dead-time for gamma rays.

Similar analysis can be extended to two and three detectors. For two detectors,
p(n,n) = p2(07)p2(2|v)
= (1—2¢,)"[1+ (1 — 2€,)” —2(1 — €,)"]
~ (1= 2e (v — 1)
p(n,g) = p2(1ly)p1(1|v)
=2[2(1 - ¢g)” = (1 = 2¢4)”][1 — (1 — €n)”] (123)
R 2€47Y€nV
p(9,9) = p2(2|7)po(0l)
=14+ (1—-2¢)" —2(1 —¢,)”

~y(y— 1)63.
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For three detectors,

p(n,n,n) = p3(0|7)ps(3|v)

=(1—-3¢)"[1 — (1 —3ep)” +3(1 —2¢,)" — 3(1 — €,)"]

~ (1 -3ey)v(v —1)(v —2)ed
p(n,n,g) = ps(1|7)p2(2[v)

=3[(1 —2€)" — (1 —3¢5)"] [1 + (1 — 2€n)” — 2(1 — €n)"]

~ 3eg(v —1)e2 124)
p(n, 9,9) = p3(2[7)p1 (1)

= 3[(1 —3eg)” —2(1 — 2¢9)" + (1 — ¢)"][1 = (1 — €n)"]

~ (Y —1)3e;env
p(9,9,9) = p3(3|7)po(0[v)

=1 —(1—3€,)" +3(1 —2¢,)” — 3(1 — ¢,)”

~y(y—1)(y - 2)e,.
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CHAPTER VII

EXPERIMENTAL DESCRIPTION

The source-detector geometry for the experiments is shown in Figure 37. It is comprised of
three plastic scintillating detectors arranged in an equilateral triangle around a ?>?Cf source
contained in an ionization chamber. The ion-chamber as shown in Figure 39 was pointed
down with the plates parallel to the floor. The distance s between the centers of the front
face of the detectors, was 40 cm. The radial distance from the source to the front face of
each detector was 23 cm. The bottom of the detectors was 33.5 cm above the surface of the
table, which in turn was 88.7 cm above the floor. The 252Cf source is intended to represent
the unknown sample to be assayed such as plutonium. In practice, the sample would not be
contained in an ion-chamber. The purpose of the ion-chamber is to provide additional timing
information which is not available in standard active and passive correlation measurements.

The time bins were set to 1 ns. The correlation window was set to 512 ns.

7.1 Functional block diagram

Figure 38 shows a functional block diagram of the experimental setup. The three detectors
were Bicron Model BC-420 fast plastic scintillating detectors and are described more fully
in Section 7.2. The high voltage (HV) for each detector was set so that the full energy de-
position from a 1 MeV neutron produced a 40 mV pulse which corresponds to the threshold
setting in the constant fraction discriminators (CFDs). The CFDs are ORTEC 935 Quad
channel CFDs. The output of the photomultiplier tubes were connected to the input of the
CFDs. The CFDs produce a zero to negative 800 mV transition at the output to mark
the time of a detection event. This output is sent to the NMIS data acquisition board,

also called the Data Acquisition/Data Capture and Compression (DA /DCC) board, which
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Figure 37: Experimental setup.

is installed in a personal computer. The software computes the time correlations between
detection events. An intuitive description of this computation is given in Section 3.1. These
correlations include the source with each detector (Ci2, C13, and C14), each pair of detectors
(Cas, Ca4, and C34), the source and each pair of detectors (Cio3, Ci24, and Ci34) and the

correlation between the three detectors (Cass).

7.2 Detectors

The detectors are Bicron BC-420 fast plastic scintillating detectors. Technical specifications
for the detectors are listed in Table 9. A quarter inch of lead shielding was placed on the
front face and sides of the detectors.

The multiplicity data was acquired with two sets of detectors, a 3-inch set and a 4-inch
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Figure 38: Block diagram of NMIS.

Table 9: Technical specifications for BC-420

material polyvinyl toluene
density 1.032 g/cm?
atomic ratio, H/C ~ 1.1

atomic number density of hydrogen 5.21 x 10?2 /cm3
atomic number density of carbon 4.74 x 10?2 /cm?
electron density 3.37 x 10?3 /cm?
light output, percent of anthracene 64

rise time 0.5 ns

decay time 1.5 ns

pulse width at FWHM 1.3 ns

1/e light attenuation length 140 cm

maximum wavelength of emission 391 nm
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set. The first experiment using the 3-inch (2.75x2.75x4in.)!  detectors was performed on
2/15/01. The bias voltages on the photomultiplier tubes were 1470 V, 1365 V, and 1435 V
on detectors 1, 2, and 3 respectively. The threshold voltages on the detector CFDs were all
set to 40 mV. This multiplicity data was acquired for 5000 loops which corresponds to 71
hours.

The second experiment used the 4-inch detectors (3.75x3.75x4in.) and was performed
on 3/01/01. The multiplicity data for this experiment was also acquired for 5000 loops or

71 hours.

Table 10: Parameters for 4-inch detectors

detector  serial bias neutron peak CFD
number number voltage threshold efficiency threshold
(#) V) (MeV) (%) (mV)
2 PH275 1550 0.96 60.0 40
3 PH276 1460 0.99 59.7 40
4 PH27T 1470 0.96 59.0 40

The geometry factor (%) for the 3-inch detector is 0.00718 and 0.0131 for a 4-inch

detector.

7.3 %2(f ionization chamber source

The source was developed by John Mihalczo and others.[23, 33] It consists of a 1 cm di-
ameter spot of 2°2Cf plated onto the center of a circular platinum disk. The disk is then
oriented inside an ionization chamber in a parallel plate configuration as shown in Figure 39.
The instrumented 252Cf source is used to provide a trigger for NMIS whenever a source
fission occurs. In order to detect when the fissions occur, a bias voltage is applied between
the disk and the shell of the source container. The ionization chamber was filled with high
purity 97% Ar, 3% COs gas mixture at 1 atm and operated in pulse-mode. Because the

ionization chamber detects both the alpha decays and the spontaneous fissions from the

!3-inch and 4-inch is used throughout the thesis as the name of the detectors rather than the exact size.
Both sets of detectors were 4-inches thick.
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252Cf . the user must discriminate against the lower amplitude alpha pulses and electronic
noise by properly setting the threshold voltage on the CFD. A CFD threshold setting of
80 mV was used. Source CF-252-3412 SR# 21 with an activity of 51.1 uCi on April 17,
2001 and a half life of 2.638 years was used in the experiments. Some pertinent data on the

spontaneous decay of 252Cf are summarized in Table 11.

SIGNAL /
BIAS VOLTAGE

GAS
FILL TUBE

CERAMIC
FEEDTHRU

1.25in

SIGNAL
COLLECTOR

Cf-252

Figure 39: Schematic of 2*2Cf ionization chamber.

Table 11: Spontaneous Decay of 2°2Cf

spontaneous fission specific activity 6.14 x 10°/s - pg
alpha-decay specific activity 1.92 x 107 /s - ug
energy of most probable light fission fragment ~ 105 MeV
energy of most probable heavy fission fragment ~ 80 MeV
average alpha energy 6.11 MeV
average energy of prompt neutron from spontaneous fission 2.13 MeV

average number of prompt neutrons from spontaneous fission 3.77/fission
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CHAPTER VIII

EXPERIMENTAL RESULTS

This chapter presents the results of the experiments described in Chapter 7. The basic
source-to-detector correlation C1;(71;) is displayed in Figure 40 for each of the three, 3-inch
detectors. The three detector-detector correlations C;;(7;;) are shown in Figure 41. Because
d; is 23 cm, %ﬁ is 0.8 ns, % is about 5 ns, %ti is about 20 ns and Ag is approximately 5 ns.

These parameters define the temporal boundaries as described in Section 4.1.

Le+08

9e+07

8e+07

1j

U Se+07
4e+07
3e+07
2e+07

le+07

’clj (ns)

Figure 40: Experimental source-detector correlations C;(71;)
in total correlated counts for 3-inch detectors.
The results of the auto-correlations Cj;(0) are shown in Table 12. Cy;(0) is the total
number of detections in detector 7 during the total counting time 7". Dividing C;;(0) by this

time gives the detection rate for the detector. The auto-correlation Ci1(0) represents the
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Figure 41: Experimental detector-detector correlations
C;j(7i;) in total correlated counts for 3 inch detectors.

total number of spontaneous fissions detected by the 252Cf ion-chamber.

Table 12: Correlation data for 3-inch and 4-inch detectors.
T = 2.56 x 10%s.

3-inch 4-inch
Cii(0) T Cii(0) T;
18,148,280,000 70891.71s~' | 17,936,460,000 70064.29s~!
522,091,500  2039.42s7! 692,959,600 2706.874s7"
561,954,600 2195.135s ! 664,763,600 2596.733s !
553,495,700 2162.093s~" 636,998,200 2488.274s~ !

I U N N

First, source-detector measurements will be described. These measurements are not
available in a passive measurement. However they provide useful information about the
validity of the equations developed in Chapter 4. In the next section the results of some of

the passive detector ratios will be shown.
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8.1 Source correlations

In this section, the results of measurements of ratios developed in Section 4.2 are presented.
Figure 42 shows the ratio %(TZJ)) for the 3-inch detectors. If spontaneous fission from the
252Cf source were the only source measured, the ratio would be a constant. This constant
would be the fission detection efficiency € of the 22Cf ion-chamber. The ratio is not con-

stant, however. It is clearly a function of the delay variable 7;;. An explanation for this

variation is correlated background.
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Figure 42: Ratio of Cjyji(7i;) with Cjj(ri;) from Equa-
tion (55).

First consider the gg region around delay zero. There would be some gg coincidences
without the ?°2Cf source present. This background could be measured. In addition, the
252Cf source generates radioactive fission products. The radiations produced by these fission
products are not correlated with the source fissions on the time scale of interest. Multiple
gamma rays from the beta decay of these products will be correlated between detectors
however. Other nuclear materials also produce radioactive nuclei through alpha decay

as well. Consequently it is not a simple matter of measuring the background gg pairs
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with the spontaneous fission source absent. In addition, gg pairs are produced through
inelastic scattering of neutrons and through (a,n) reactions. Recall that in Equation (58),
gamma pairs from radioactive decay were included in the ratio. By also including gamma,

coincidences from inelastic scattering, the ratio becomes

Cijn _ €rV1 (’Y(’Y — 1)+ pivi(vi — 1))
Cij (NI'Y('Y — 1)+ Npyr(vr — 1) + Niyi(yi — 1))

(125)

where p; is the probability of an inelastic scatter from fission neutrons, and in addition
to N,., the number of radioactive decays, N; is the total number of inelastic scatters from
all neutrons in the vicinity of the detectors. The numerator represents gamma detections
which are correlated with source fissions. They include fission gamma rays as well as gamma,
rays from the inelastic scattering of fission neutrons. The numerator represents detector-
detector correlations not necessarily correlated with the source. These correlations include
those from fission gamma rays, gamma rays from radioactive decay and inelastic scattering.

The ratio in Figure 42 peaks at about 5 ns. Although nn pairs should be visible in
this region, the alternative possibility of gamma scattering exists and could result in values
larger than unity. Some evidence of this scattering can be seen in Figure 11.

Assuming that the gn and ng regions of Figure 42 provide the most reliable measure of
fission detection efficiency €y, the fission detection efficiency can be estimated to be about
90% + 10%. From Table 12, the number of detected fissions is 1.81x10'° and 1.79x10'°
respectively for the 3-inch and 4-inch experiments. The number of actual fissions is then
2.01x10'0 and 1.99x10'° which implies a 2°2Cf mass of 0.128 and 0.127 ug respectively.

Another ratio involving source correlations in Equation (126) is shown in Figure 43. The
value of this ratio in the gamma-neutron regions is one. Using the data from Tables 5 and
6, the value in the gg region is 0.98 and 1.18 in the nn region. The graph undershoots in the
gg region indicating that the multiplicity distribution for gamma rays from Section 4.4.2 is

not correct for the gamma rays detected. The value in the nn region appears to be about
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right except for an overshoot just adjacent to the gg region.
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8.2 Passive detector correlations

Ratios of passive detector-detector correlations were developed in Section 4.3. The ratios
with all time variables integrated out will first be presented, and detector efficiency and the
mass of 2°2Cf will be calculated from these ratios. Then in the subsequent Section 8.2.1,
the time dependent ratios will be presented. A comparison between the results from the
3-inch and 4-inch detectors will be presented in Section 8.3. Finally 2>2Cf mass will also be
calculated from gnn coincidences in Section 8.4.

The results of the passive measurements of Equations (127) to (132) are shown in Ta-
ble 13 for the 3-inch detectors and Table 14 for the 4-inch detectors. Evaluation of the
factorial moments comes from Section 4.4.1 for neutrons and Section 4.4.2 for gamma rays.

These factorial moments are for a non-multiplying system (M = 1). In the case of a
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multiplying system, these moments are replaced with those derived in Chapter 5 in which
case M becomes an additional unknown. From these measurements, the neutron detection
efficiency can be computed from Equation (130) or from Equation (128) with less reliable
results. The gamma ray detection efficiency can be computed from Equation (130) or Equa-
tion (127) with less reliable results. Recall from Section 8.1 that there are many sources
of all-gamma combinations which make Equations (127) and (128) troublesome. There are
three measurements for each of these equations, one for each of the pairs of detectors (23,

24 and 34). The results for these detection efficiencies are shown in Tables 15 and 16.

Cyg . v(y—1) _ 011

_ _ (127)
Cogg Yy = Dy — 2)¢g €g
C
99 _ e, = 3.77ey, (128)
ng
anlg y(y —1)
= €, = 8.54¢ 129
Cyn vy 7 7 (129)
C vivr—-1
Cg‘:ln _u ~ e, = 3,196, (130)

The following two equations (131) and (132) can be used to determine the number
of fissions N. The mass of 2°2Cf is then determined from the specific activity and total

measurement time 7T’ by Mef = m

(an)2 — N 72?

€n = 3.53Ne (131)
Cynlg vy —1) " "
2 H2~
Con)” _ N0 —ga3ne, (132)
Cynin v(v—1)

With the detection efficiencies €, and €, already determined, the number of sponta-
neous fissions N are easily calculated from Equations (131) and (132). The results of these

calculations are shown in Table 17.



Table 13: Passive ratios for 3-inch detectors

Equation Combination To3 (%) To4 (%) T34 %(%)
127 999 107.0 0.7 106.9 0.7 114.8 0.7
ggn 0.00457 1.0 - - - -
128 gng - - 0.00466 1.0 - -
ngg - - - - 0.00446 1.0
gng 0.00933 1.0 - - 0.00864 1.0
129 ggn - - 0.00945 1.0 0.00869 1.0
ngg 0.00918 1.0 0.00917 1.0 - -
gnn 0.00445 1.5 0.00459 1.5 - -
130 ngn 0.00448 1.4 - - 0.00444 1.4
nng - - 0.00434 14 0.00433 1.4
gng 1.21E408 1.0 - - 1.41E+08 1.0
131 ggn - - 1.16E+08 1.0 | 1.37TE4+08 1.0
ngg 1.28E+08 1.0 | 1.29E4+08 1.0 - -
gnn 2.54E+08 1.4 | 2.38E+08 14 - -
132 ngn 2.63E4+08 1.4 - - 2.68E4+08 1.4
nng - - 2.72E4+08 14 | 2.82E+08 1.4
Table 14: Passive ratios for 4-inch detectors
Equation Combination To3 (%) To4 %(%) T34 %(%)
127 999 118.6 0.6 115.6 0.6 109.9 0.6
ggn 0.00734 0.6 - - - -
128 gng - - 0.00790 0.6 - -
ngg - - - - 0.00777 0.7
gng 0.00905 0.6 - - 0.00976 0.6
129 ggn - - 0.00926 0.7 0.00977 0.6
ngg 0.00885 0.7 0.00906 0.7 -
gnn 0.00762 0.7 0.00817 0.7 - -
130 ngn 0.00764 0.7 - - 0.00827 0.7
nng - - 0.00800 0.7 0.00788 0.7
gng 3.13E4+08 0.6 - - 2.69E4+08 0.6
131 ggn - - 2.85E4+08 0.6 | 2.57TE4+08 0.6
ngg 3.06E4+08 0.6 | 2.92E4+08 0.6 - -
gnn 3.72E408 0.7 | 3.23E+08 0.7 - -
132 ngn 3.55E+08 0.7 - - 3.03E408 0.7
nng - - 3.31E4+08 0.7 | 3.33E+08 0.7
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Table 15: Gamma-ray detection efficiency for detector k. Av-
erage gamma-ray detection efficiency for 3-inch detectors is
€g = 1.04 x 1079 + 4.5% and 4-inch detectors is ¢, =
1.04 x 1079 + 7.3%.

Equation Combination Index 3-inch 4-inch
Number iy ok €gk 2 (%) €gk 7 (%)
999 23 4 1.03E-03 0.7 9.26E-04 0.6
127 999 24 3 1.03E-03 0.7 9.51E-04 0.6
999 34 2 9.58E-04 0.7 1.00E-03 0.6
gng 23 4 1.09E-03 1.0 1.06E-03 0.6
ngg 23 4 1.07E-03 1.0 1.04E-03 0.7
199 ggn 24 3 111E-03 1.0 1.08E-03 0.7
ngg 24 3 1.07TE-03 1.0  1.06E-03 0.7
ggn 34 2 1.02E-03 1.0 1.14E-03 0.6
gng 34 2 1.01E-03 1.0 1.14E-03 0.6
Table 16: Neutron detection efficiency for detector k. Aver-
age neutron detection efliciency for 3-inch detectors is €, =
1.33 x 1079 £ 7.1% and 4-inch is €, = 2.33 x 1079 £+ 10.2%.
Equation Combination Index 3-inch 4-inch
Number iy k Enk 2 (%) €nk Z (%)
ggn 23 4 1.21E-03 1.0 1.95E-03 0.6
128 gng 24 3 124E-03 1.0 2.09E-03 0.6
ngg 34 2 1.18E-03 1.0  2.06E-03 0.7
gnn 23 4 1.39E-03 1.5 2.39E-03 0.7
ngn 23 4 1.40E-03 1.4 239E-03 0.7
130 gnn 24 3 1.44E-03 1.5 2.56E-03 0.7
nng 24 3 1.36E-03 1.4 2.51E-03 0.7
ngn 34 2 1.39E-03 1.4  2.59E-03 0.7
nng 34 2 1.36E-03 1.4 247E-03 0.7
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Table 17: Ratio of (Cyp,)? with Cynlg and Cgyp, for 3-inch
detectors (N = 2.71 x 101 £ 6.5%, m.; = 0.18 ug) and 4-
inch (N = 3.45 x 10'° + 7.1%, m.f = 0.22 ug) detectors.

Equation Combination Index 3-inch 4-inch
Number ij N N
gng 23 2.58E+10 3.81E+10
ngg 23 2.74E4+10 3.72E+10
131 ggn 24 2.47E+10 3.47TE+10
ngg 24 2.74E4+10 3.55E+10
ggn 34 2.92E+10 3.12E+10
gng 34 3.01E4+10 3.27E+10
gnn 23 2.58E+10 3.78E+10
ngn 23 2.67TE4+10 3.60E+10
132 gnn 24 2.42E+10 3.28E+10
nng 24 2.76E+10 3.35E+10
ngn 34 2.72E+10 3.07E+10
nng 34 2.86E4+10 3.38E410

The results for the number of fissions N and ?*2Cf mass shown in Table 17 have an
unfortunate disagreement between the 3-inch and 4-inch detectors. The results of the ex-
periment with the 3-inch detectors estimates the mass of ?>2Cf to be 0.18 ug. The result
for the 4-inch detectors is 0.22 pg. The problem can be attributed to contamination of the
gamma-neutron combinations with neutron triples. A comparison of the 3-inch and 4-inch
detector data will be examined following an examination of the time dependence of the

passive ratios used.

8.2.1 Time dependent ratios

Equations (127) to (132) can also be written with one of the time variables 7;; left in. In
this case, the final integration is not performed. These equations are shown below.
Conlg(Ti) _ v(y = 1)

= — "€ (133)
an (Tij) Y g

an|n(7-ij) o V(V - 1)6 -
an(Tij) - T n( ZJ) (134)
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Conlr)? _ o 37
Conolri) 3y (135)

(an(Tij))2 . 727 €
an|n(7'ij) B NI/(I/ — 1) g

(136)

Equations (133) and (134) are the time dependent version of the equations used to de-
termine the detection efficiency for gamma rays and neutrons respectively. Each equation
can be integrated with respect to any of the three time variables, 103, 704 and 734. Each of
these integrations is on one of the three regions of ggn and gnn. Graphs of these time de-
pendent ratios for the 3-inch detectors are shown in Figure 44 for 793 dependence, Figure 45
for 794 dependence and Figure 46 for 734 dependence. These graphs show a region of time
independence. The ratio with 734 dependence shows considerable distortion. This distortion
is not surprising since Cas4 (723, T24) is not a function of 734. The integration is nevertheless
performed with a substitution of variables based on the relation, 734 = 794 — T93. However,
the fully integrated ratio from Table 17 shows that this region is consistent with the other
two regions.

Equations (135) and (136) are the time dependent version of the equations used to de-
termine the total number of fissions N. Viewing the time dependence is useful in diagnosing
why the results were less than satisfactory. Graphs of these rations are shown in Figures 47,
48 and 49. The effect of nn and nnn contamination is evident in the graphs. This influence

can be seen in the region between + 10 ns. The minimum in that region is more than an

order of magnitude greater than at the long delays.

8.3 Comparison between 3-inch and 4-inch detectors

The results in the experiments between the 3-inch and 4-inch detectors have some in-
consistencies. The 4-inch detector resulted in a higher 252Cf mass determination from
Equations 131 and 132.

The first anomaly between the 3-inch and 4-inch detectors is that the gamma-ray de-

tection efficiency from Table 15 between the two are nearly identical. From the solid angle



Ratio

Ranosu

0.014

0.012—

0
30 -25 -20 -15 -10 -5 0 5 10 15 20 25

T,,(ns)

Figure 44: Ratio of Cyg|,,(723) and Cy,g)4(723) with Cpg(723) on
the left and ratio of Cypj,(723) and Cgpjg(T23) With Cgp(723)
on the right from Equations (133) and (134).

30

0.014 — — 880 |

....... gnn
---- N8R

0.012 —

- nng

0.01

0.008

0.006

0.004

0.002

T, (ns)

Figure 45: Ratio of Cyg|,,(T24) and Cy,g)4(724) With Cpg(724) on
the left and ratio of Cypjp(724) and Cgpg(T24) With Cgp(724)
on the right from Equations (133) and (134).
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Figure 47: Ratio of Cpg(723)? with Cpgjn(723) and Cigig(723)
on the left and ratio of Cyn(re3)? with Cypjp(r23) and

Cyn|g(T23) on the right from Equations (135) and (136).
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Figure 48: Ratio of Cng(T24)2 with Cng|n(7-24) and Cng|g(7-24)
on the left and ratio of an(724)2 with an|n(724) and

Cyn|g(T24) on the right. Equations (135) and (136).
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Figure 49: Ratio of Crg(734)? with Cgp(734) and Cigig(734)
on the left and ratio of Cypn(734)? with Cgpjn(734) and

Cynig(734) on the right from Equations (135) and (136).
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effect, the 4-inch detector should have about a 16/9 = 1.78 advantage over the 3-inch de-
tectors. The detection efficiency for neutrons from Table 16 reflects this solid angle effect
but the gamma detection efficiency does not.

Dead-time can be dismissed as an explanation for this anomaly. Assuming that the
gamma-ray detection efficiency is 1.05 x 1073, the average number of detections per fission
would be Fe, = (7.98)(1.05 x 103) = 0.008. From Equation (113) in Chapter 6 we know

that less than 7(7;1)63 = (68;5) (1.05 x 1073)2 = 3.8 x 10> are lost to dead-time. This loss

is less than 0.5%.

A comparison between the time domain version of Equation 129 is shown in Figure 50.
This comparison is consistent with equal detection efficiency between the two sizes of detec-
tors. The ratio is nearly identical for both sizes of detectors. A similar comparison between
the 3-inch and 4-inch detectors is shown in Figure 51 for the determination of the neutron
detection efficiency from Equation 130. In this case the ratio reflects the expected effect of

solid angle.
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Figure 50: Ratio of Cj,g4(723) with Cyg(7e3) on the left and
ratio of Cg,g(23) with Cyn(7e3) on the right from Equa-
tion (133).

The determination of gamma-ray detection efficiency form Equation 129 depends also on
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Figure 51: Ratio of Cy,,(723) with Cpgy(23) on the left and

ratio of Cgy,n(723) With Cgn(723) on the right from Equa-

tions (134).
the first and second moments of . The source to detector correlation C1; depends only on
the first moment of v and detection efficiency. This correlation for all three of the 3-inch and
4-inch detectors is shown in Figure 52. The neutron distributions are consistent with the
difference in solid angle between the 3-inch and 4-inch detectors. The gamma distributions
at about 1 ns do not reflect the effect of solid angle. A closer view of the gamma distribution
is shown in Figure 53. It is gratifying that the amplitude of the gamma distributions in
Figure 53 is consistent with the gamma-ray detection efficiencies from Equation 129 in
Table 15. The gamma-ray and neutron detection efficiencies computed from C; are shown
in Table 18.

From a comparison at a delay beyond 20 ns, it appears that the threshold energy for
neutrons was slightly lower for the 4-inch detectors than for the 3-inch detectors. For a given
threshold on the CFD, the energy threshold for neutrons is higher than that for gamma
rays.[10][12] This relation does not generally depend on detector size.

The 3-inch detectors detect about 1.6 gamma rays per neutron from fission while the

4-inch detectors detect about 0.94 gamma rays per neutron. Although the gamma-ray
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Table 18: Comparison of 3-inch and 4-inch detector efficien-
cies.

3-inch 4-inch
€n €g €n €g
1.45E-03 1.05E-03 2.90E-03 1.31E-03

1.50E-03 1.16E-03 2.87E-03 1.23E-03
147E-03 1.15E-03 2.71E-03 1.21E-03

W N

detections per fission between the 3-inch and 4-inch detectors are closer than expected, they
are not as close as indicated by the passive estimation of gamma ray detection efficiency

from Table 15. The ratio of the two is % =1.11.
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Figure 52: Comparison of the source-detector correlations
C1(714) in correlated counts per fission between the 3-inch
and 4-inch detectors.

A comparison between the 3-inch and 4-inch detectors of the detector-detector corre-
lation Cj; is shown in Figure 54 with a closeup of the gg peak in in Figure 55. This
correlation is proportional to the square of the detection efficiency and the second multi-

plicity moment. In general it is consistent with the previous discussion. The ratio of the
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Figure 53: Comparison of the gamma peak of the source-
detector correlations C1;(71;) in correlated counts per fission
between the 3-inch and 4-inch detectors.

two is % = 1.54. This ratio indicates that the detection efficiency for the 4-inch de-
tectors for gamma rays from all sources is 1.24 times that of the 3-inch detectors. Recall
however that for gamma rays, the detector-detector correlation may contain gamma pairs
from sources other than fission.

The detection efficiency for gamma rays was lower for the 4-inch detectors than would
be expected from both solid angle effects and neutron detection efficiency. In addition, the
passive method from Equation 129 to determine gamma ray detection efficiency was lower

than indicated from the source-to-detector correlation C7;. Underestimating gamma-ray

detection efficiency will result in an overestimate in the 2°2Cf mass from Equation 132.

8.4 Determination of mass from gamma-neutron-neutron triplets

An alternative to Equations (131) and (132) may be better to determine the number of
spontaneous fissions. With €, and ¢, determined from C7; in Section 8.3, the number of
fissions are proportional to Cy,y,. The neutron pairs assures that the neutron source is not

from (a,n) reactions.[14] Furthermore, the gnn regions are more temporally distinct than



U

o

2e+06 | | 1 1 | |

—e R23 (3 in) =l
o0 R, (3 in)
@--9 R34(3 in)
—n R23 (4 in)
B0 R24(4 in) 4
s--a R, (4in) -

1.75e+06 —

1.5e+06

1.25e+06

le+06

7.5e+05

Se+05

2.5e+05

Tij (ns)

Figure 54: Comparison of the detector-detector correlations
C;;(7i;) in total correlated counts between the 3-inch and 4-
inch detectors.
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the nn pairs in C,,,. The equation for this correlation is

C

gnin = Ny (v — 1)e2e,. (137)

As before, each of the three regions gnn, ngn and nng can be integrated with respect to
one time variable leaving the correlation a function of the other time variable. For example
the region gnn can be integrated on To3 leaving it as a function of 794 and vice versa. The
six combinations are shown in Figure 56. Better results are obtained if the nnn triplets
are subtracted from the data. From Figure 56 one can see the the neutron triplet rate at
7=b ns is 89 counts per 1 ns time bin. The total number of neutron triplets in the gnn
region is shown in Table 19 along with the results for each of the three regions gnn, ngn and
nng. The equations for each of these three regions are shown below with the appropriate

detector efficiencies used.

Cynn = Nv(v — 1)¥ego€n3€ns (138)
Chngn = Nv(v — 1)7eg3€n2€na (139)
Cnng = NV(V - 1)7€g46n2€n3 (140)

The results from these equations are presented in Table 19. The value of Cjj;;; is shown
with the nnn contribution subtracted out. The detection efficiencies are from Table 18.
The counts in Cjj, nnn and accidentals contributed to the estimate of the uncertainty.
The relative uncertainty for the 4-inch detector is less because of the greater count rate.
Both the gnn and ngn regions produced very consistent results. The nng region produced
slightly lower estimates for the number of fissions for both the 3-inch and 4-inch detectors.

The 252Cf source was independently measured at ORNL on October 18, 2002 ' by
comparing total neutron count from 3He detectors to a NIST traceable 252Cf source. This
measurement resulted in 4.6x10%*+ 3% fissions per second for a 2°2Cf mass of 0.0749 ug.

This measurement implies a ?*>Cf mass of 0.115 ug and 0.114 ug on the dates of the 3-inch

!Personal communication with John Neal, John Mihalczo and Sara Pozzi.
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Figure 56: Gamma-neutron-neutron triplets as a function of
delay time 7;; given that a neutron was detected in the third
detector k.
Table 19: Determination of the number of spontaneous fis-
sions N from Equation (132) from the 3-inch and 4-inch de-
tectors.
3-in 4-in
triplet Cz'jk N UWN My Cz'jk N UWN M
(%) (ug) (%) (ng)
nnn 895 - - 3940 -

gnn  4.12E4+03 1.85E4+10 1.7% 0.118 1.77E4+04 1.80E4+10 0.8% 0.115
ngn  4.38E4+03 1.84E4+10 1.7% 0.117 1.68E+04 1.81E+10 0.9% 0.115
nng  4.22E403 1.75E4+10 1.7% 0.112 1.72E+04 1.78E+10 0.8% 0.113
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and 4-inch experiments respectively. The results from the Cg,, method in Table 19 are

consistent with this independent measurement.
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CHAPTER IX

CONCLUSIONS

A new, passive method to measure the mass of a spontaneous fission source with fast-plastic
scintillating detectors was developed. It was demonstrated for the simple case of a non-
multiplying point source provided by a 2°2Cf source. The method is based on physical
principles rather than a calibration. Furthermore, it is possible to determine detection
efficiency from the measurement of the unknown. Therefore calibration and independent
determination of detector efficiency are not necessary.

The analysis is aided by the temporal separation of gamma-neutron combinations. How-
ever, even for a point source, the gamma-neutron temporal separation was not adequate
to provide perfect separation. However, removing nnn triplets from the gnn combinations
provided an accurate measure of fissile mass.

The mass of the ?52Cf source was estimated from three methods. The results of these
methods are compared to an independent measurement of the source at ORNL in Table 20.
The three methods include 1) the count rate of the ion-chamber containing the source; 2)

C2 .
o 2~; and 3) the C, , correlations.

gn|n’

2
Con
Cynlg

The 252Cf source was independently measured at ORNL on October 18, 2002 ' by

and

ratios of

comparing total neutron count from 3 He detectors to a NIST traceable 2*2Cf source. This
measurement resulted in 4.6x10%*+ 3% fissions per second for a 2°2Cf mass of 0.0749 ug.
This measurement implies a ?*>Cf mass of 0.115 ug and 0.114 ug on the dates of the 3-inch
and 4-inch experiments respectively.

The number of fissions detected in the ion-chamber containing the ?°2Cf, adjusted for
the fission detection-efficiency €; is the most reliable of these. Of the two passive methods,

the Cyy),, correlation proved to be more accurate with an adjustment for neutron triplets.

!Personal communication with John Neal, John Mihalczo and Sara Pozzi.
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The ratio of the gn correlation squared suffered from both nn contamination in Cy, as
well as nnn contamination in Cy,y and Cgyj,. The results for each of these methods to
determine the 2>?Cf mass are shown below in Table 20 for both the 3-inch and 4-inch
detector experiments.

Table 20: Summary of the 22Cf mass determination from
various methods

3-inch detectors 4-inch detectors

Method Equation *2Cf mass *2Cf mass
(1g) (1g)
Independent - 0.115 £ 3% 0.114 + 3%
Ion-Chamber Eq. (55) 0.128 + 10% 0.127 + 10%
Cz, ratio Eq. (131), (132) 0.18 + 7% 0.22 + 7%
Cynjn Eq. (137) 0.117 £ 1.7% 0.115 + 0.9%

The analysis developed in Chapter 4 provides the tools to determine both the quantity of
a fission source as well as detector efficiency in a single measurement without the necessity
of a calibration standard. The temporal separation between gamma-neutron combinations
will be degraded in more complex measurement scenarios by scattering, spatial distribution
of the fissile material and multiplication. In these cases greater care will be required to
separate overlapping regions. The analytical tools necessary to do this were developed in
Sections 4.5 and 5.1. In any event, the analysis developed in Chapter 4 with the extension
to multiplying material in Chapter 5 are perfectly valid without temporal separation.

In addition to the temporal effects, correlated detections can result from both elastic
and inelastic scattering, radioactive decay and alpha-n reactions. The analysis of the time
correlations was developed to include these interactions in Section 4.6. The moments for
each of these are summarized in Table 7. In more complex measurement scenarios, greater
care in the analysis may be required to separate these correlations. The gnn combinations
as used in this experiment to determine the 252Cf mass appears to be the most immune
from these interfering interactions.

Larger detectors are of course desirable to make this method more practical. Larger
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detectors will reduce measurement time. On the other hand, larger detectors will be subject
to greater cross-talk and more dead-time as count rates increase. This advantage must also
be weighed against practical considerations.

Because of the extremely short correlation time allowed by this method, (one thou-
sandth that of a well counter) this technique should prove superior to well counters in
the measurement of oxides and fluorides where the background from (c, n) reactions is
troublesome.

The next experiment using this method might be the measurement of a thin spherical
shell of Pu. This experiment will provide the extension of a spatial distribution of a different

fissile material while minimizing the effects of attenuation and multiplication.
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APPENDIX A

FACTORIAL MOMENTS FROM PROBABILITY
GENERATING FUNCTIONS

A.1 Definitions

In this appendix, probability generating functions will be used to generate the factorial
moments for gamma and neutron counting from fission for multiplying media. First the
moments used in Chapter 4 will be derived using probability generating functions. The
effect of multiplication will then be included in the equation and the moments re-derived
to include the effect of self multiplication.

The number of neutrons produced in a fission reaction is a random variable v with a
probability density p,(r). A similar statement can be made about the number of gamma
rays v and p,(y). The probability generating function for these discrete random variables
is

o0
pu(2) =) p(v)2" (141)
v=0
and

pv(z) = Zp,y(’y)z'y (142)
v=0

respectively.

The nth moment v, of the random variable is

_d"py(2)
YT T gn

(143)

z=1
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The zeroth and first three moments of v are then

o0
vy = Zpu(’/)zy =1
v=0 z=1
o
v = dpg(z) =Y w2 =w
z z=1 v=0 z=1 (144)
deV(Z) e v—2 v —1)
ve =~ = Zz/(u —p,(v)z =v(v-1)
2 =1 ,—p z=1
d3p, (= - v—
vz = g ?S ) = v(v —1)(v — 2)p, (v)z" 3 =v -1 -2
z z=1 L= z=1

Of course the same goes for 7.

A.2 Combined v, v moments

The combined v, ¥ moments can also be derived by forming a new random variable n = v+.

The probability generating function for n is

Pn(z) = py(2)py (7). (145)

One can again write the factorial moments for the combined gamma-neutron detection.

Beginning with the 0th moment

no = pu(2)py(2)],_;

) 00 (146)
=Y n) Yy p,(| =1
v=0 v=0 =1
The first moment of the combined gamma-neutron detection is
ny = Pn
dz |,
(147)
_ v, 9y
dz 07T g P =1

where the functional (z) was dropped to save on clutter.
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The second moment is then found by taking the derivative again

= LPn
? dz2 z=1
d’p, dp, dp, | d’p, dpy dp,

_ dpydpy | &py | dpydpy 14
d2 P dy e T a2t dz dz |,_, (148)
d2p,, dpu dp’y d2p’y

= &P, odPv TPy ,
dz? Pyt dz dz + a2 P 1

o d*py,
3 p—
dz3 |,_,
_ d3pup d2pu dpl
dz3 "7 dz? dz
 Poudy | dvo
dz? dz dz dz? (149)
L&y Py dpy
a3 T a2 dz
L Eoydpy | dpy Epy

dz? dz = dz dz?|,_,

_Pn, e, T,
dz3

dz? dz dz dz? dz3 Py

z=1
Now substituting the non-multiplying moments from Equation (144) for the values of

the various derivatives yields

ny=v+y

ng=v(—1)+vy+y(y - 1)+

nyg=v(v—1)(v—-2)+v(v-1)3
(150)

+v(v—-1)7+vy(y-1)

+y(y =Dy —2) +y(y -7

+y(y -1 +7v(v —1).
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The moments for the four regions in the detector-detector correlation and the eight regions

in the bicorrelation are produced in the resulting Equation (150).

A.3 Multiplication and neutron moments

Bohnel introduces the probability generating function h(z) to account for multiplication.
It represents the number of neutrons leaving the system after the introduction of a single

neutron
h(z) = (1 = p)z + ppy;[h(2)] (151)

where p is the probability that a neutron induces a fission. The subscript ¢ on v; indicates
the multiplicity of an induced fission.

The first three derivatives of h(z) are

Bt
Phiz) | Ppulh] (dh(z)\* | dpu[h] &*h(z)
e _p[ dn? <d2)+ dh dz2]
Bh(z) | dpylh] (dh(2)\® (152)
a3 P an? <dz>
d®py;[h] dh(z) d®h(z) | dpy,[h] d*h(2)
TITe Tdr 42 T dn dd ]

Notice that the derivatives of h(z) with respect to z appear on both sides of the equation.
The derivatives can now be solved and evaluated at z = 1. It should be considered that

h(z)|;=1 = 1. Therefore

dpy; [h(2)]
dz

dpy [h]

o =7 (153)

h=1

z=1

etc.

The derivatives of h(z) can now be explicitly solved for later use.

)| (1-p)
dz |,_, 1-py;
2 V2, (1 — 1)
dz? |,_, (1 —pr;)3
d*h(z) p(1—p)? 2 p
SRl AN Py oy oY i1
dz? |,o, (1—pm)* vl =1 =2+ 3l = 1) 1—pr;
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The function h(z) represents the response of the system to the introduction of a single
neutron. The function v(z) = fs[h(z)] represents the response of the system to a sponta-
neous fission source. The process of taking derivatives is now repeated with v(z).

dv(z) _ dfsdh

dz dh dz
2v(z)  d%fs (dh\?  df,d?h
PRI (d_> T h a2 (155)

dz

dz3 dh?

Pu(z)  dfs (dh\® , d*f dhd*h N df, d*h
dh? dz dz? = dh dz3

The equations are again solved for z = 1.

dv(z) (1= o
dz o (1 —pp_z'> v
vz -\’ vilvy —1)__
ddZ(Q | z=1 - (11— pr) {VS(VS R : 1- I/ipl VS]
dzl;gz) T (11__pr>3 {Vs(vs - D(vs - 2) (156)
+ i _pyip |:31/1(1/Z — Dvg(vs — 1) +vi(v; — 1) (v — 2)’/_3]

Usually Equation (156) is written in terms of the leakage multiplication M rather than

the variable p. Where the leakage multiplication is defined as

M=1"P (157)
1 —py;

The other factor involving p then becomes

P :M—l
1-py; 771

(158)

With these two substitutions and the substitution v, for the nth factorial moment
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Equation (156) becomes

dv(z)
dz

d*v(z) 9 M-1

2?2 |,_, = M* |vs2 + v — 1 Vs1Vi2

d3v(z M—-1
(3 ) = M3 Vs + | — [Bvsavia + Vs1v43]
dz° |, i — 1

M—-1)\2
o (Vil - 1) USIVZ?Q}

A.4 Multiplication and gamma moments

(159)

N

At this point the gamma rays must be considered. The average number of neutrons escaping
from the sample from a single spontaneous fission and fissions induced thereby is Mv;. The

number of induced fissions can therfore be inferred.
Mvs = (1 -p)[Us + fivi] (160)
Solving for f; in terms of M and v gives

fi= M s (161)

Now for a spontaneous fission, the total number of gamma rays generated will be

¥ =+ fii (162)

The probability generating function will be

py(Z) = Drys (z)p% (fiz) (163)
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Again the first three derivatives of p,(z) are taken,

dpy _ dpy. dpy; ,
dZ - d (fl )+p'ys('z) dz fZ

dz? dz?

dpy, dpy; p%

dp, > d
p’y p’ys (fl ) p’ys p’n fZ

d2p8 dpsd 1 1
= () 2B g (S

dz2 dz
(164)
d®p d? d*p.,, d
y _ @ Dy ) Py p%
a3~ dn P Py (fiz) + dz? fz
&p, dp% dp, d* p"n- 2
+ dz? fz dz dz? Ji
&*p, dp% dpy, &Py o
+ dz? fz dz d22 Ji
dp,, d*ps; dpy,
d; —=Xk fz p’Ys( ) 7 Z3
d*py, &P, dpy; dpsdpz py,
:d;p’n(fi) d; ,Yfz - 7fz"" ’Ys() ’Yfz
and again solving at z = 1 produces
dp, _ M -1
dz = =Ys1 + (Vﬂ — 1’/31) Vi1
d’p, M-1
= 2 ;
dz2 - Ys2 + (Uﬂ — 1Vsl> Vs17Yil
M—-1 \?
+ (1/'1 — 11/31) Vi2 (165)
K3
d3p, -
a3 |~ Ys3 + 3 (uﬂ — 1Vs1> Ys2Yil

M—-1 \? M-1 \*
+3 Vsl | Ys17Vi2 + Vs1 | i3
vip — 1 vip — 1

Now inserting the derivatives from Equations (159) and (165) into the Equations (147),(148)
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and (149) for ni, no and ng, produces the factorial moments for combined gamma and neu-

tron coincidences with multiplication.

M—-1

=M ; 1

n1 Vsl + Y51 + (Vil — 1V31> Yi1 (166)
n ~ WV -

g

il Vi1 — 1

g8

M-—-1
+2Muvg [731 + ( Vsl) ’Yﬂ]

I/il—l

~ /

M-1 M-1
ng = Ys2 + 2 (V — 1Vsl> Ys17i1 + (71/51) Yi2 (167)

-~

gn

M -1
+ M? [Vs2 + (71> Vsll/i2:|

Vi1 —

nn

M -1 M—1 2 M—1 3
ng = Ys3 + 3 Vst ) Vs2vi1 + 3 Vst | Ys1Yie+ | ——=vs1 | s (168)
vip —1 vip —1 vip —1

~ J

~~

g8g

M—1 M-1 \?
+3Mugy { vs2 + 2 Vst | Ys1%i1 + | ———=Vs1 | Vi2
vip —1 vip —1

~ J
~~

ggn

M—-1 M-1
+ 3M2 [VSQ + < > Vsl’/i2:| {731 + < Vsl) 'Yil}
vip —1 vip — 1

~ J
~~

gnn

M -1 M—1)\2
+M3{I/s3+<7 1)[3V52Vi2+1/517/i3]+3( 1) V51Vi22}

Vi1 —

1

~ J
~~

nnn

A.5 Effect of neutron capture on the neutron moments

In the the previous derivation of the neutron moments with multiplication in Section A.3
as well as in the neutron multiplicity point Equations (6) from Section 2.2, it is assumed

that the probability that a neutron is lost do to capture p. is small. If this probability is



considered, the leakage multiplication becomes

Mo Lt=P—De
1 — kegy

py; is rewritten as keyy.

117

(169)

The probability generating function for the multiplication of a single neutron from Equa-

tion (151) must be rewritten to include p,.

h(z) = (1 —p — pc)z + ppy,[h(2)]

The first three derivatives of h(z) are now

d};(zz) =(1-p—p)+ pdp%[h] dl;(;)

i, e (o)) e

ey [d3§;‘;%[h] (d};(;) ) 3
ofgpistacs aies

The derivatives of h(z) are now explicitly solved as before for later use.

dh(z) M
dz z=1 a
d*h(z) 9 P
Y VL S S |
dZQ 1 M (1 —pFZ) VZ(VZ )
d3h(2) . 3 p 2 p
dz3 - = M m VZ(VZ — 1)(1/2 — 2) + 3VZ(VZ — ].) 1 _sz

The process of taking derivatives is now repeated with v(z) = fs[h(2)].

dv(z)  dfsdh

dz dh dz
Fo) _ E, (0 d
dz2  dh? \dz dh dz?

dz

a2 dzd2 T dh

Bu(z)  dBf, (dh\® _d%f,dhd®h  dfs d3h
dz3 ~ dh3

The equations are again solved for z = 1.

(170)

(171)

(172)

(173)
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dv(z) _ M
dz |, s

2 (1), —
a V(QZ) = M? Vs(Vs 1) + sz(Vz 1) Vg

dz* |,_; 1 —wvip
d3

) _ = {6 ) (174)

e (Bl Dl = 1) + = D — 27

2
—_—2
+ 3 (1 _pyip> vi(v; — 1) 1/_5}

Equation (174) cannot be written entirely in terms of the leakage multiplication M as
was previously done in Equation (159). The other factor involving p cannot be written
in terms of the leakage multiplication alone because they do not contain p.. Rather than
treating p as an unknown it may be more convenient to treat the additional unknown as
the k.p; with the following substitution:

P key
1—p7 (1 — kegy)

(175)

With this substitution and the substitution v, for the nth factorial moment Equa-

tion (174) becomes

dv(z) _ Mo,
dz |, s
d*v(z) 2 ket
a2 |,_, Vs2 + 7L — kogy) Vs1V;2
176)
Pvz)| kes (
e M {Vs3 + (m [3vsavia + Vs143]

+ 3 7keff 21/ V2
Tl —kegy))

In this form, the point equations will have two unknowns, leakage multiplication M as well

as the neutron multiplication constant ks, rather than just one unknown.
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APPENDIX B

FORMULAE

B.1 Discrete probability relationships

General case

P[AU B] = P[A] + P[B] — P[AN B]

or

P[AU B] = P[A] + P|B] — P|A|P[B

if A and B are independent.

Conditional probability

PWE:B%%@

B.2 Continuous probability relationships

FOI' the Continuous case
f(z,y)
fr(y)

flaly) =

fx@) = [ faaay= [ 1) frtdy

B.3 Combinations, permutations and binomial expansion

There are (Z) combinations of n objects taken k at a time:

(1) = m
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Note that (2) are the coefficients in the expansion

n
n n n—
oy =3 ()atut
k=0
-1 -1 —2
Y+ n(n2' )wn72y2 + n(n 3)'(’", )$n73y3 + ..

1

=z" +na"

The number of permutations of n objects taken k at a time:

P(n,k) = k'(Z) = f!k)!

The probability of k£ successes out of n experiments with a probability of success being p is

n n!

Pall) = ()h(1 = ot = sk

B.4 Discrete to continuous probability relationships

Stirling’s formula

n

n! =n"e "V2mn

DeMoivre-Laplace theorem: If np(1 — p) << 1 and |k — np| =< /np(1 — p) then

n 1 k—np

P, (k) = kl_pyr by = T mp(-p)
(k) (k>p (1-p) 27mp(1_p)e

Poisson’s theorem

n n k
P, (k) = (k)pk(l ) ( ]fr) o= TP

B.5 Stirling numbers of the second kind

n 1 - n—i T\,
s = e (5)
=0

or recursively

s = 5 4 ks

B.6 Detector solid angle

Cylindrical detector
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Rectangular detector[19]

)

(z2 — zp) (Y2 — Yp)
Zp [(5”2 —zp)? + (Y2 — yp)® + Zz
2 [(z1 = 2p)2 + (y2 — Yp)? + 22

tan ! (
—tan~!

Q=

(1 — zp)(y2 — p)

(z2 — 7p)(y1 — yp)
Zp [(552 - -Tp)2 + (y1 — yp)2 + Z1%:|

(1 — zp) (Y1 — ¥p)
2z [(w1 = 2p)? + (y1 — yp)? + 22]

—tan~!

+ tan
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